The COVID-19 pandemic has frequently produced more highly transmissible SARS-CoV-2 variants, such as Omicron, which has produced sublineages. It is a challenge to tell apart high-risk Omicron sublineages and other lineages of SARS-CoV-2 variants. We aimed to build a fine-grained deep learning (DL) model to assess SARS-CoV-2 transmissibility, updating our former coarse-grained model, with the training/validating data of early-stage SARS-CoV-2 variants and based on sequential Spike samples. Sequential amino acid (AA) frequency was decomposed into serially and slidingly windowed fragments in Spike. Unsupervised machine learning approaches were performed to observe the distribution in sequential AA frequency and then a supervised Convolutional Neural Network (CNN) was built with three adaptation labels to predict the human adaptation of Omicron variants in sublineages. Results indicated clear inter-lineage separation and intra-lineage clustering for SARS-CoV-2 variants in the decomposed sequential AAs. Accurate classification by the predictor was validated for the variants with different adaptations. Higher adaptation for the BA.2 sublineage and middle-level adaptation for the BA.1/BA.1.1 sublineages were predicted for Omicron variants. Summarily, the Omicron BA.2 sublineage is more adaptive than BA.1/BA.1.1 and has spread more rapidly, particularly in Europe. The fine-grained adaptation DL model works well for the timely assessment of the transmissibility of SARS-CoV-2 variants, facilitating the control of emerging SARS-CoV-2 variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.