While DNA N6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has generated great interest recently. Biochemical and genetic evidence supports that AMT1, a MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, 6mA transmission mechanism remains to be elucidated. Taking advantage of Single Molecule Real-Time Circular Consensus Sequencing (SMRT CCS), here we provide definitive evidence for semi-conservative transmission of 6mA, showcased in the unicellular eukaryote Tetrahymena thermophila. In wildtype (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); hemi-methylation (hemi-6mApT) is transiently present on the parental strand of newly replicated DNA. In ΔAMT1 cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and likely processive, while de novo 6mA deposition in ΔAMT1 cells is slow and sporadic. In Tetrahymena, regularly spaced 6mA clusters coincide with linker DNA of the canonical nucleosome arrays in the gene body. Importantly, in vitro methylation of human chromatin by reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semi-conservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a molecular pathway for 6mA transmission with striking similarity to 5-methyl cytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark.
Cell synchronization is a powerful tool to understand cell cycle events and its regulatory mechanisms. Counter-flow centrifugal elutriation (CCE) is a more generally desirable method to synchronize cells because it does not significantly alter cell behavior and/or cell cycle progression, however, adjusting specific parameters in a cell type/equipment-dependent manner can be challenging. In this paper, we used the unicellular eukaryotic model organism, Tetrahymena thermophila as a testing system for optimizing CCE workflow. Firstly, flow cytometry conditions were identified that reduced nuclei adhesion and improved the assessment of cell cycle stage. We then systematically examined how to achieve the optimal conditions for three critical factors affecting the outcome of CCE, including loading flow rate, collection flow rate and collection volume. Using our optimized workflow, we obtained a large population of highly synchronous G1-phase Tetrahymena as measured by 5-ethynyl-2′-deoxyuridine (EdU) incorporation into nascent DNA strands, bulk DNA content changes by flow cytometry, and cell cycle progression by light microscopy. This detailed protocol can be easily adapted to synchronize other eukaryotic cells.
Pseudocohnilembus persalinus is a free‐living marine scuticociliate that, as a new model organism, has been used in a wide variety of studies. However, long‐term laboratory maintenance for this species is mainly achieved by subculture that requires rigorous culture environments and, too often, cultures of the organism die out for a variety of reasons. Successful transport of viable cultures also poses problems for researchers. This study describes a simple and rapid protocol for long‐term cryopreservation of P. persalinus. The effects of physiological states of individuals before freezing, the type and concentration of cryoprotectant, and optimal temperatures for freezing and thawing were assessed. A cryopreservation protocol, using a mixture of 30% glycerol and 70% concentrated P. persalinus cell culture, incorporating rate‐controlled freezing at −80 °C before liquid nitrogen storage, maintained a high recovery efficiency after 8 wk of storage. These results suggest that broader application of this protocol to build a cryopreserved marine protozoa culture bank for biological studies may be possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.