Breast cancer prognostic modeling is difficult since it is governed by many diverse factors. Given the low median survival and large scale breast cancer data, which comes from high throughput technology, the accurate and reliable prognosis of breast cancer is becoming increasingly difficult. While accurate and timely prognosis may save many patients from going through painful and expensive treatments, it may also help oncologists in managing the disease more efficiently and effectively. Data analytics augmented by machine-learning algorithms have been proposed in past for breast cancer prognosis; and however, most of these could not perform well owing to the heterogeneous nature of available data and model interpretability related issues. A robust prognostic modeling approach is proposed here whereby a Pareto optimal set of deep neural networks (DNNs) exhibiting equally good performance metrics is obtained. The set of DNNs is initialized and their hyperparameters are optimized using the evolutionary algorithm, NSGAIII. The final DNN model is selected from the Pareto optimal set of many DNNs using a fuzzy inferencing approach. Contrary to using DNNs as the black box, the proposed scheme allows understanding how various performance metrics (such as accuracy, sensitivity, F1, and so on) change with changes in hyperparameters. This enhanced interpretability can be further used to improve or modify the behavior of DNNs. The heterogeneous breast cancer database requires preprocessing for better interpretation of categorical variables in order to improve prognosis from classifiers. Furthermore, we propose to use a neural networkbased entity-embedding method for categorical features with high cardinality. This approach can provide a vector representation of categorical features in multidimensional space with enhanced interpretability. It is shown with evidence that DNNs optimized using evolutionary algorithms exhibit improved performance over other classifiers mentioned in this paper. INDEX TERMS Breast cancer prognostic modelling, entity embedding, deep learning networks, evolutionary algorithms, fuzzy inferencing.
This paper presents a fuzzy dominance-based analytical sorting method as an advancement to the existing multi-objective evolutionary algorithms (MOEA). Evolutionary algorithms (EAs), on account of their sorting schemes, may not establish clear discrimination amongst solutions while solving many-objective optimization problems. Moreover, these algorithms are also criticized for issues such as uncertain termination criterion and difficulty in selecting a final solution from the set of Pareto optimal solutions for practical purposes. An alternate approach, referred here as equitable fuzzy sorting genetic algorithm (EFSGA), is proposed in this paper to address these vital issues. Objective functions are defined as fuzzy objectives and competing solutions are provided an overall activation score (OAS) based on their respective fuzzy objective values. Subsequently, OAS is used to assign an explicit fuzzy dominance ranking to these solutions for improved sorting process. Benchmark optimization problems, used as case studies, are optimized using proposed algorithm with three other prevailing methods. Performance indices are obtained to evaluate various aspects of the proposed algorithm and present a comparison with existing methods. It is shown that the EFSGA exhibits strong discrimination ability and provides unambiguous termination criterion. The proposed approach can also help user in selecting final solution from the set of Pareto optimal solutions. INDEX TERMS Multi-objective optimization, evolutionary algorithms, equitable fuzzy sorting genetic algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.