A structure-based virtual screening (SBVS) was conducted on a ligand-supported homology model of the human histamine H4 receptor (hH4R). More than 8.7 million 3D structures derived from different vendor databases were investigated by docking to the hH4R binding site using FlexX. A total of 255 selected compounds were tested by radioligand binding assay and 16 of them possessed significant [(3)H]histamine displacement. Several novel scaffolds were identified that can be used to develop selective H4 ligands in the future. As far as we know, this is the first SBVS reported on H4R, representing one of the largest virtual screens validated by the biological evaluation of the virtual hits.
The theory and practice of proton microspeciation based on NMR-pH titrations are surveyed. Principles of bi-, tri-, tetra-, and n-protic microequilibrium systems are discussed. Evaluation methods are exemplified by case studies on bi- and tetraprotic biomolecules. Selection criteria and properties of 'reporter' NMR nuclei are described. Literature data on complete microspeciations of small ligands and site-specific basicity characterizations of peptides and proteins are critically reviewed.
Rotamers of N-acetyl-L-cysteine (NAC, the most popular mucolytic drug) are characterized in terms of populations, site- and conformer-specific acid-base properties, reducing strength, and molecular pharmacology. A new, general relationship between the bulk- and rotamer-specific basicities is introduced. NAC at high pH predominantly exists in a trans thiolate-carboxylate rotameric form, whereas protonation promotes the occurrence of intramolecular hydrogen bond-forming isomers. Distribution curves of the rotamers are depicted as a function of pH. Rotamer-dependent thiolate basicities differ by up to 0.5 log k units. Carboxylate basicities show slight conformation-dependence only. The membrane-penetrating capabilities from various compartments of the body are assessed on the basis of the pH-dependent charge of the molecule. The thiol-disulfide half-cell potential is calculated, using the correlation between the thiolate basicity and oxidizability. The oxidation-reduction properties of NAC are compared to those of other biological thiols in their definite microscopic forms. The pharmacokinetic behavior is interpreted in terms of the physicochemical parameters, providing molecular/submolecular explanation for several therapeutic properties of NAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.