Plastic covering is used worldwide to protect crops against damaging growing conditions. This agricultural practice raises some controversial issues. While it significantly impacts on local economic vitality, plasticulture also shows several environmental affects. In the Apulia Region (Italy) the wide-spreading of artificial plastic coverings for vineyard protection has showed negative consequences on the hydrogeological balance of soils as well as on the visual quality of rural landscape. In order to monitor and manage this phenomenon, a detailed site mapping has become essential. In this study an efficient object-based classification procedure from Very High Spatial Resolution (VHSR) true color aerial data was developed on eight test areas located in the Ionian area of the Apulia Region in order to support the updating of the existing land use database aimed at plastic covered vineyard monitoring.
This study proposes an automatic procedure for individual fruit tree identification using GeoEye-1 sensor data. Depending on site-specific pruning practices, the morphologic characteristics of tree crowns may generate one or more brightness peaks (tree top) on the imagery. To optimize tree counting and to minimize typical background noises from orchards (i.e. bare soil, weeds, and man-made objects), a four-step algorithm was implemented with spatial transforms and functions suitable for spaced stands (asymmetrical smoothing filter, local minimum filter, mask layer, and spatial aggregation operator). System performance was evaluated through objective criteria, showing consistent results in fast capturing tree position for precision agriculture tasks.
The automatic extraction of buildings from true color stereo aerial imagery in a dense built-up area is the main focus of this paper. Our approach strategy aimed at reducing the complexity of the image content by means of a three-step procedure combining reliable geospatial image analysis techniques. Even if it is a rudimentary first step towards a more general approach, the method presented proved useful in urban sprawl studies for rapid map production in flat area by retrieving indispensable information on buildings from scanned historic aerial photography. After the preliminary creation of a photogrammetric model to manage Digital Surface Model and orthophotos, five intermediate mask-layers data (Elevation, Slope, Vegetation, Shadow, Canny, Shadow, Edges) were processed through the combined use of remote sensing image processing and GIS software environments. Lastly, a rectangular building block model without roof structures (Level of Detail, LoD1) was automatically generated. System performance was evaluated with objective criteria, showing good results in a complex urban area featuring various types of building objects
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.