Pre-clinical drug screening is an important step in assessing the metabolic effects and hepatic toxicity of new pharmaceutical compounds. However, due to the complexity of the liver microarchitecture, simplified in vitro models do not adequately reflect in vivo situations. Especially spatial heterogeneity, known as metabolic zonation, is often lost due to limitations introduced by typical culture conditions. By culturing primary rat hepatocytes in varied ambient oxygen levels on either gas-permeable or non-permeable culture plates, we highlight the importance of biomimetic oxygen supply for the targeted induction of zonation-like phenotypes. Resulting cellular profiles illustrate the effect of pericellular oxygen concentration and consumption rates on hepatic functionality in terms of zone-specific metabolism and β-catenin signaling. We show that modulation of ambient oxygen tension can partially induce metabolic zonation in vitro when considering high supply rates, leading to in vivo-like drug metabolism. However, when oxygen supply is limited, similar modulation instead triggers an ischemic reprogramming, resembling metabolic profiles of hepatocellular carcinoma and increasing susceptibility toward drug-induced injury. Application of this knowledge will allow for the development of more accurate drug screening models to better identify adverse effects in hepatic drug metabolism.
The liver zonation is an important phenomenon characterized by a gradient of several functions along the liver acinus. However, this gradient remains difficult to reproduce in in-vitro conditions, making the obtention of an in-vitro method to recapitulate the liver zonation a challenging issue. In this study, we evaluated the spatial evolution of the transcriptome profile of human induced pluripotent stem cells (hiPSCs) differentiated toward hepatocytes-like cells (HLCs) phenotype in a microfluidic biochip environment. Cells collected at the inlet of the biochip, where the oxygen concentration is higher, were identified by the expression of genes involved in metabolic pathways related to cellular reorganization and cell proliferation. Cells collected in the middle and at the outlet of the biochips, where oxygen concentrations are lower, were characterized by the upregulation of genes involved in cellular detoxification processes (CYP450), PPAR signaling or arginine biosynthesis. A subset of 16 transcription factors (TFs) was extracted and identified as upstream regulators to HNF1A and PPARA. These TFs are also known as regulators to target genes engaged in the Wnt/βcatenin pathway, in the TGFβ/BMP/SMAD signaling, in the transition between epithelial mesenchymal transition (EMT) and mesenchymal epithelial transition (MET), in the homeostasis of lipids, bile acids and carbohydrates homeostasis, in drug metabolism, in the estrogen processing and in the oxidative stress response. Overall, the analysis allowed to confirm a partial zonation-like pattern in hiPSCs-derived HLCs in the microfluidic biochip environment. These results provide important insights into the reproduction of liver zonation in-vitro for a better understanding of the phenomenon.
As a response to the challenge of the in vitro maintenance of liver endothelial cells, we have used hiPSCs-derived LSECs and have measured their performance by comparing them to their primary counterpart using the nanoCAGE technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.