Rhabdomyosarcomas with TFCP2 fusions represent an emerging subtype of tumors, initially discovered by RNA-sequencing. We report herein the clinicopathological, transcriptional and genomic features of a series of 14 cases.Cases were retrospectively and prospectively recruited and studied by immunohistochemistry (MYF4, MYOD1, S100, AE1/E3, ALK), fluorescence in situ hybridization with TFCP2 break-apart probe (n=10/14), array-comparative genomic hybridization (Agilent), whole RNA-sequencing (Truseq Exome, Illumina) or anchored multiplex PCR based targeted next-generation sequencing (Archer® FusionPlex® Sarcoma kit). Patient's age ranged between 11 to 86 years, including 5 pediatric cases. Tumors were located in bone (n=12/14) and soft tissue (n=2/14). Most bone tumors invaded surrounding soft tissue. Craniofacial bones were over-represented (n=8/12). Median survival was 8 months and 5 patients are currently alive with a median follow-up of 20 months. Most tumors displayed a mixed spindle cell and epithelioid pattern with frequent vesicular nuclei. All tumors expressed keratins and showed a rhabdomyogenic phenotype (defined as expression of MYF4 and/or MYOD1). ALK was overexpressed in all but 3 cases without underlying ALK fusion on break-apart FISH (n=5) nor next generation sequencing (n=14).TFCP2 was fused in 5' either to EWSR1 (n=6) or FUS (n=8). EWSR1 was involved in both soft tissue cases. FISH with TFCP2 break-apart probe was positive in all tested cases (n=8), including one case with unbalanced signal. On array-CGH, all tested tumors displayed complex genetic profiles with genomic indexes ranging from 12.8 to 90 and CDKN2A deletion was recurrent (n=9/10). FET-TFCP2 rhabdomyosarcomas clustered together and distinctly from other rhabdomyosarcomas subgroups.Altogether, our data confirm and expand the spectrum of the new family of FET-TFCP2 rhabdomyosarcomas which are associated with a predilection for the craniofacial bones, an aggressive course and recurrent pathological features. Their association with ALK overexpression might represent a therapeutic vulnerability.
This study confirms that ALK rearrangements in ATC are rare and that the mutational landscape of ATC is heterogeneous, with many genes implicated in the follicular epithelial cell dedifferentiation process. This may explain the limited effectiveness of targeted therapeutic options tested so far.
Thyroid carcinoma is the most common endocrine malignant tumor and accounts for 1% of all new malignant diseases. Among all types and subtypes of thyroid cancers that have been described so far, papillary thyroid carcinoma is the most frequent. The standard management treatment of these tumors consists of surgery, followed by radioiodine treatment in case of high risk of relapse. The most aggressive forms are commonly treated by chemotherapy, radiotherapy or experimental drug testing. We recently reported the case of a patient presenting an anaplastic thyroid carcinoma with lung metastases. Fluorescence in situ hybridization analysis allowed us to detect a rearrangement of the anaplastic lymphoma kinase (ALK) gene in both tumors. The patient was treated with crizotinib and presented an excellent drug response. We present here the subsequent investigations carried out to further characterize this genetic alteration and to assess the prevalence of ALK rearrangements in thyroid lesions. High resolution array-comparative genomic hybridization data complemented by RT-PCR and sequencing analyses, allowed us to demonstrate the presence of a STRN/ALK fusion. The STRN/ALK transcript consisted of the fusion between exon 3 of STRN and exon 20 of ALK. Subsequent screening of 75 various thyroid tumors by RT-PCR revealed that 2 out of 29 papillary thyroid carcinomas exhibited the same fusion transcript. None was detected in other types of malignant or benign thyroid lesions analyzed. These findings could pave the way for the development of new targeted therapeutic strategies in the treatment of papillary thyroid carcinomas and point to ALK inhibitors as promising agents that merit rapid evaluation.
Triple-negative breast cancer (TNBC) patients have an increased risk of developing visceral metastases and other primary nonbreast cancers, particularly lung cancer. The differential diagnosis of TNBC metastases and primary cancers from other organs can be difficult due to lack of a TNBC standard immunoprofile. We analyzed the diagnostic value of estrogen receptor, progesterone receptor, human epidermal growth factor receptor, thyroid transcription factor-1 (TTF1), Napsin A, mammaglobin, gross cystic disease fluid protein 15 (GCDFP15), Sry-related HMg-Box gene 10 (SOX10), GATA-binding protein 3 (GATA3), and androgen receptor in a series of 207 TNBC and 152 primary lung adenocarcinomas (LA). All tested TNBCs were TTF1 and Napsin A-negative. When comparing TNBC and TTF1-positive or negative LA, SOX10 had the best sensitivity (62.3%) and specificity (100%) as a marker in favor of TNBC compared with LA, irrespective of TTF1 status (P<0.0001). GATA3 had moderate sensitivity (30.4%) and excellent specificity (98.7%) and misclassified only 2/152 LA (1.3%). GCDFP15 had a moderate sensitivity (20.8%) and excellent specificity (98%) and misclassified only 3/152 (2%) LA. Mammaglobin and androgen receptor had moderate sensitivities (38.2% and 30%), good specificities (81.6% and 86%), and misclassified 28/152 and 21/152 LAs, respectively. In multivariate analysis, the best markers, enabling the distinction between SOX10-negative TNBC and TTF1 and Napsin A-negative LA were GATA3 (odds ratio=33.5; 95% confidence interval, 7.3-153.5; P<0.0001) and GCDFP15 (odds ratio=31.7; 95% confidence interval, 6.9-145.6; P<0.0001). Only 13/207 (6.3%) TNBC cases did not express any aforementioned marker. On the basis of our results, the best sequential immunohistochemical analysis to differentiate TNBC from TTF1-negative LA is first SOX10 followed by GATA3, and finally GCDFP15. This order is important in the diagnostic workup of small biopsies from lung nodules in women with a previous history of TNBC.
Mutations of CTNNB1 have been implicated in tumorigenesis in many organs. However, tumors harboring a CTNNB1 translocation are extremely rare and this translocation has never been reported in a uterine mesenchymal neoplasm. We report a novel translocation t(2;3)(p25;p22) involving the GREB1 (intron 8) and CTNNB1 (exon 3) in a uterine tumor resembling ovarian sex cord tumor (UTROSCT), which exhibited extrauterine metastasis. The translocation detected by RNA-sequencing was validated by RT-PCR, and resulted in nuclear expression of β-catenin. Juxtapositioning with GREB1, which is overexpressed in response to estrogens, resulted in overexpression of a truncated and hypophosphorylated nuclear β-catenin in the primary and recurrent tumors. This accumulation of nuclear β-catenin results in a constitutive activation of the Wnt/ β-catenin signaling pathway with a major oncogenic effect. The CTNNB1 gene fusion, promoted by an estrogen-responsive gene (GREB1), could be a potential driver of tumorigenesis in this case and a therapeutic target with adapted inhibitors. RT-PCR and immunohistochemistry performed on 11 additional UTROSCTs showed no CTNNB1 fusion transcript or nuclear β-catenin immunoreactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.