We show that the mutual, through‐space compression of atomic volume experienced by approaching topological atoms causes an exponential increase in the intra‐atomic energy of those atoms, regardless of approach orientation. This insight was obtained using the modern energy partitioning method called interacting quantum atoms (IQA). This behaviour is consistent for all atoms except hydrogen, which can behave differently depending on its environment. Whilst all atoms experience charge transfer when they interact, the intra‐atomic energy of the hydrogen atom is more vulnerable to these changes than larger atoms. The difference in behaviour is found to be due to hydrogen's lack of a core of electrons, which, in heavier atoms, consistently provide repulsion when compressed. As such, hydrogen atoms do not always provide steric hindrance. In accounting for hydrogen's unusual behaviour and demonstrating the exponential character of the intra‐atomic energy in all other atoms, we provide evidence for IQA's intra‐atomic energy as a quantitative description of steric energy.
Key to progress in molecular simulation is the development of advanced models that go beyond the limitations of traditional force fields that employ a fixed, point charge‐based description of electrostatics. Taking water as an example system, the FFLUX framework is shown capable of producing models that are flexible, polarizable and have a multipolar description of the electrostatics. The kriging machine‐learning methods used in FFLUX are able to reproduce the intramolecular potential energy surface and multipole moments of a single water molecule with chemical accuracy using as few as 50 training configurations. Molecular dynamics simulations of water clusters (25–216 molecules) using the new FFLUX model reveal that incorporating charge‐quadrupole, dipole–dipole, and quadrupole–charge interactions into the description of the electrostatics results in significant changes to the intermolecular structuring of the water molecules. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
We present here the first application of the quantum chemical topology force field FFLUX to condensed matter simulations. FFLUX offers many-body potential energy surfaces learnt exclusively from ab initio data using Gaussian process regression. FFLUX also includes high-rank, polarizable multipole moments (up to quadrupole moments in this work) that are learnt from the same ab initio calculations as the potential energy surfaces. Many-body effects (where a body is an atom) and polarization are captured by the machine learning models. The choice to use machine learning in this way allows the force field’s representation of reality to be improved ( e.g ., by including higher order many-body effects) with little detriment to the computational scaling of the code. In this manner, FFLUX is inherently future-proof. The “plug and play” nature of the machine learning models also ensures that FFLUX can be applied to any system of interest, not just liquid water. In this work we study liquid water across a range of temperatures and compare the predicted bulk properties to experiment as well as other state-of-the-art force fields AMOEBA(+CF), HIPPO, MB-Pol and SIBFA21. We find that FFLUX finds a place amongst these.
DL_FFLUX is a force field based on quantum chemical topology that can perform molecular dynamics for flexible molecules endowed with polarizable atomic multipole moments (up to hexadecapole). Using the machine learning method kriging (aka Gaussian process regression), DL_FFLUX has access to atomic properties (energy, charge, dipole moment, etc.) with quantum mechanical accuracy. Newly optimized and parallelized using domain decomposition Message Passing Interface (MPI), DL_FFLUX is now able to deliver this rigorous methodology at scale while still in reasonable time frames. DL_FFLUX is delivered as an add-on to the widely distributed molecular dynamics code DL_POLY 4.08. For the systems studied here (10 3 − 10 5 atoms), DL_FFLUX is shown to add minimal computational cost to the standard DL_POLY package. In fact, the optimization of the electrostatics in DL_FFLUX means that, when high-rank multipole moments are enabled, DL_FFLUX is up to 1.25× faster than standard DL_POLY. The parallel DL_FFLUX preserves the quality of the scaling of MPI implementation in standard DL_POLY. For the first time, it is feasible to use the full capability of DL_FFLUX to study systems that are large enough to be of real-world interest. For example, a fully flexible, high-rank polarized (up to and including quadrupole moments) 1 ns simulation of a system of 10 125 atoms (3375 water molecules) takes 30 h (wall time) on 18 cores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.