The Keck Planet Imager and Characterizer (KPIC) is a purpose-built instrument to demonstrate technological and instrumental concepts initially developed for the exoplanet direct imaging field. Located downstream of the current Keck II adaptive optic (AO) system, KPIC contains a fiber injection unit (FIU) capable of combining the high-contrast imaging capability of the AOs system with the high dispersion spectroscopy capability of the current Keck high resolution infrared spectrograph (NIRSPEC). Deployed at Keck in September 2018, this instrument has already been used to acquire high-resolution spectra (R > 30;000) of multiple targets of interest. In the near term, it will be used to spectrally characterize known directly imaged exoplanets and low-mass brown dwarf companions visible in the northern hemisphere with a spectral resolution high enough to enable spin and planetary radial velocity measurements as well as Doppler imaging of atmospheric weather phenomena. Here, we present the design of the FIU, the unique calibration procedures needed to operate a single-mode fiber instrument and the system performance. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Using the Keck Planet Imager and Characterizer (KPIC), we obtained high-resolution (R∼35,000) K-band spectra of the four planets orbiting HR 8799. We clearly detected H 2 O and CO in the atmospheres of HR 8799 c, d, and e, and tentatively detected a combination of CO and H 2 O in b. These are the most challenging directly imaged exoplanets that have been observed at high spectral resolution to date when considering both their angular separations and flux ratios. We developed a forward modeling framework that allows us to jointly fit the spectra of the planets and the diffracted starlight simultaneously in a likelihood-based approach and obtained posterior probabilities on their effective temperatures, surface gravities, radial velocities, and spins. We measured v sin(i) values of
More than a dozen young stars host spiral arms in their surrounding protoplanetary disks. The excitation mechanisms of such arms are under debate. The two leading hypotheses-companion-disk interaction and gravitational instability (GI)-predict distinct motion for spirals. By imaging the MWC758 spiral arm system at two epochs spanning ∼5 yr using the SPHERE instrument on the Very Large Telescope, we test the two hypotheses for the first time. We find that the pattern speeds of the spirals are not consistent with the GI origin. Our measurements further evince the existence of a faint "missing planet" driving the disk arms. The average spiral pattern speed is 0°.22±0°.03 yr −1 , pointing to a driver at-+ 172 14 18 au around a 1.9 M ☉ central star if it is on a circular orbit. In addition, we witness time-varying shadowing effects on a global scale that are likely originating from an inner disk.
A benchmark brown dwarf (BD) is a BD whose properties (e.g., mass and chemical composition) are precisely and independently measured. Benchmark BDs are valuable in testing theoretical evolutionary tracks, spectral synthesis, and atmospheric retrievals for substellar objects. Here, we report results of atmospheric retrieval on a synthetic spectrum and a benchmark BD, HR 7672 B, with petitRADTRANS. First, we test the retrieval framework on a synthetic PHOENIX BT-Settl spectrum with a solar composition. We show that the retrieved C and O abundances are consistent with solar values, but the retrieved C/O is overestimated by 0.13–0.18, which is about four times higher than the formal error bar. Second, we perform retrieval on HR 7672 B using high spectral-resolution data (R = 35,000) from the Keck Planet Imager and Characterizer and near-infrared photometry. We retrieve [C/H], [O/H], and C/O to be −0.24 ± 0.05, −0.19 ± 0.04, and 0.52 ± 0.02. These values are consistent with those of HR 7672 A within 1.5σ. As such, HR 7672 B is among only a few benchmark BDs (along with Gl 570 D and HD 3651 B) that have been demonstrated to have consistent elemental abundances with their primary stars. Our work provides a practical procedure of testing and performing atmospheric retrieval, and sheds light on potential systematics of future retrievals using high- and low-resolution data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.