The decline of biodiversity is one of the major current global issues. Still, there is a widespread lack of information about the spatial distribution of individual species and biodiversity as a whole. Remote sensing techniques are increasingly used for biodiversity monitoring and especially the combination of LiDAR and hyperspectral data is expected to deliver valuable information. In this study spatial patterns of vascular plant community composition and α-diversity of a temperate montane forest in Germany were analysed for different forest strata. The predictive power of LiDAR (LiD) and hyperspectral (MNF) datasets alone and combined (MNF+LiD) was compared using random forest regression in a ten-fold cross-validation scheme that included feature selection and model tuning. The Remote Sens. 2012, 4 2819 final models were used for spatial predictions. Species richness could be predicted with varying accuracy (R 2 = 0.26 to 0.55) depending on the forest layer. In contrast, community composition of the different layers, obtained by multivariate ordination, could in part be modelled with high accuracies for the first ordination axis (R 2 = 0.39 to 0.78), but poor accuracies for the second axis (R 2 ≤ 0.3). LiDAR variables were the best predictors for total species richness across all forest layers (R was small (≤0.07)-if any-when using both LiDAR and hyperspectral data as compared to using only the best single predictor set. This study shows the high potential of LiDAR and hyperspectral data for plant biodiversity modelling, but also calls for a critical evaluation of the added value of combining both with respect to acquisition costs.
Recent progress in remote sensing provides much-needed, large-scale spatio-temporal information on habitat structures important for biodiversity conservation. Here we examine the potential of a newly launched satellite-borne radar system (Sentinel-1) to map the biodiversity of twelve taxa across five temperate forest regions in central Europe. We show that the sensitivity of radar to habitat structure is similar to that of airborne laser scanning (ALS), the current gold standard in the measurement of forest structure. Our models of different facets of biodiversity reveal that radar performs as well as ALS; median R² over twelve taxa by ALS and radar are 0.51 and 0.57 respectively for the first non-metric multidimensional scaling axes representing assemblage composition. We further demonstrate the promising predictive ability of radar-derived data with external validation based on the species composition of birds and saproxylic beetles. Establishing new area-wide biodiversity monitoring by remote sensing will require the coupling of radar data to stratified and standardized collected local species data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.