Maternal mRNAs are essential for protein synthesis during oogenesis and early embryogenesis. To adapt translation to specific needs during development, maternal mRNAs are translationally repressed by shortening the polyA tails. While mRNA deadenylation is associated with decapping and degradation in somatic cells, maternal mRNAs with short polyA tails are stable. Here we report an essential role for the germline-specific paralog of the mRNA cap-binding factor eIF4E, known as eIF4E1b, in the storage and repression of maternal mRNAs with short polyA tails. eIF4E1b binds to the mRNA cap and is targeted to ribonucleoprotein complexes through its direct interaction with eIF4ENIF1/4E-T. In early embryos, eIF4E1b binds to a specific set of translationally repressed mRNAs with short or no polyA tails, such as histone mRNAs, which are translated later on during embryogenesis. Consistent with an important role in maternal mRNA dormancy, mutation of eIF4E1b in zebrafish impairs female germline development. Understanding the mechanism and function of eIF4E1B provides new insights into fundamental post-transcriptional regulatory principles governing early vertebrate development.
Molecular compatibility between gametes is a prerequisite for successful fertilization. As long as a sperm and egg can recognize and bind each other via their surface proteins, gamete fusion may occur even between members of separate species, resulting in hybrids that can impact speciation. The egg membrane protein Bouncer confers species specificity to gamete interactions between medaka and zebrafish, preventing their cross-fertilization. Here, we leverage this specificity to uncover distinct amino acid residues and N-glycosylation patterns that differentially influence the function of medaka and zebrafish Bouncer and contribute to cross-species incompatibility. Curiously, in contrast to the specificity observed for medaka and zebrafish Bouncer, seahorse and fugu Bouncer are compatible with both zebrafish and medaka sperm, in line with the pervasive purifying selection that dominates Bouncer’s evolution. The Bouncer-sperm interaction is therefore the product of seemingly opposing evolutionary forces that, for some species, restrict fertilization to closely related fish, and for others, allow broad gamete compatibility that enables hybridization.
All sexually reproducing organisms depend on fertilization to survive as species. Despite the importance of fertilization, the mechanisms that drive sperm-egg compatibility are poorly understood. In fish, the egg protein Bouncer is necessary for fertilization and is species-specific between medaka and zebrafish. Here, we investigate whether Bouncer is generally species-specific in fish and identify features mediating its medaka/zebrafish specificity. In vitro fertilization experiments using zebrafish and medaka show that Bouncer is not a general specificity factor. Instead, its homologs exhibit wide compatibility with sperm, in line with the pervasive purifying selection that dominates Bouncer's evolution. We further uncover specific features of Bouncer - distinct amino acid residues and N-glycosylation patterns - that differentially influence the function of medaka and zebrafish Bouncer homologs and contribute to medaka/zebrafish specificity. This work reveals important themes central to understanding Bouncer's function in sperm binding and clarifying the molecular requirements for Bouncer's sperm interaction partner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.