Auxin influences plant development through several distinct concentration-dependent effects . In the Arabidopsis root tip, polar auxin transport by PIN-FORMED (PIN) proteins creates a local auxin accumulation that is required for the maintenance of the stem-cell niche. Proximally, stem-cell daughter cells divide repeatedly before they eventually differentiate. This developmental gradient is accompanied by a gradual decrease in auxin levels as cells divide, and subsequently by a gradual increase as the cells differentiate. However, the timing of differentiation is not uniform across cell files. For instance, developing protophloem sieve elements (PPSEs) differentiate as neighbouring cells still divide. Here we show that PPSE differentiation involves local steepening of the post-meristematic auxin gradient. BREVIS RADIX (BRX) and PROTEIN KINASE ASSOCIATED WITH BRX (PAX) are interacting plasma-membrane-associated, polarly localized proteins that co-localize with PIN proteins at the rootward end of developing PPSEs. Both brx and pax mutants display impaired PPSE differentiation. Similar to other AGC-family kinases, PAX activates PIN-mediated auxin efflux, whereas BRX strongly dampens this stimulation. Efficient BRX plasma-membrane localization depends on PAX, but auxin negatively regulates BRX plasma-membrane association and promotes PAX activity. Thus, our data support a model in which BRX and PAX are elements of a molecular rheostat that modulates auxin flux through developing PPSEs, thereby timing PPSE differentiation.
Phylogenetic trees are commonly reconstructed based on hard optimization problems such as maximum parsimony (MP) and maximum likelihood (ML
We report on new techniques we have developed for reconstructing phylogenies on whole genomes. Our mathematical techniques include new polynomial-time methods for bounding the inversion length of a candidate tree and new polynomial-time methods for estimating genomic distances which greatly improve the accuracy of neighbor-joining analyses. We demonstrate the power of these techniques through an extensive performance study based on simulating genome evolution under a wide range of model conditions. Combining these new tools with standard approaches (fast reconstruction with neighbor-joining, exploration of all possible refinements of strict consensus trees, etc.) has allowed us to analyze datasets that were previously considered computationally impractical. In particular, we have conducted a complete phylogenetic analysis of a subset of the Campanulaceae family, confirming various conjectures about the relationships among members of the subset and about the principal mechanism of evolution for their chloroplast genome. We give representative results of the extensive experimentation we conducted on both real and simulated datasets in order to validate and characterize our approaches. We find that our techniques provide very accurate reconstructions of the true tree topology even when the data are generated by processes that include a significant fraction of transpositions and when the data are close to saturation.
Phylogenies derived from gene order data may prove crucial in answering some fundamental open questions in biomolecular evolution. Yet very few techniques are available for such phylogenetic reconstructions. One method is breakpoint analysis, developed by Blanchette and Sankoff ¾ for solving the "breakpoint phylogeny." Our earlier studies confirmed the usefulness of this approach, but also found that BPAnalysis, the implementation developed by Sankoff and Blanchette, was too slow to use on all but very small datasets. We report here on a reimplementation of BPAnalysis using the principles of algorithmic engineering. Our faster (by 2 to 3 orders of magnitude) and flexible implementation allowed us to conduct studies on the characteristics of breakpoint analysis, in terms of running time, quality, and robustness, as well as to analyze datasets that had so far been considered out of reach. We report on these findings and also discuss future directions for our new implementation.
Highlights d BR perception in developing phloem rescues the dwarfism of receptor mutants d BR perception antagonizes CLE45 peptide signaling in the root protophloem d Local and systemic effects of BR perception in the phloem are genetically distinct d Developing phloem can orchestrate cellular behavior of adjacent tissues
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.