Residual stresses in components are a central issue in almost every manufacturing process, as they influence the performance of the final part. Regarding hot forming processes, there is a great potential for defining a targeted residual stress state, as many adjustment parameters, such as deformation state or temperature profile, are available that influence residual stresses. To ensure appropriate numerical modeling of residual stresses in hot forming processes, comprehensive material characterization and suitable multiscale Finite Element (FE) simulations are required. In this paper, experimental and numerical investigations of thermo-mechanically processed steel alloy 1.3505 (DIN 100Cr6) are presented that serve as a basis for further optimization of numerically modeled residual stresses. For this purpose, cylindrical upsetting tests at high temperature with subsequently cooling of the parts in the media air or water are carried out. Additionally, the process is simulated on the macroscale and compared to the results based on the experimental investigations. Therefore, the experimentally processed specimens are examined regarding the resulting microstructure, distortions, and residual stresses. For the investigation on a smaller scale, a numerical model is set up based on the state-data of the macroscopic simulation and experiments, simulating the transformation of the microstructure using phase-field theory and FE analysis on micro- and meso-scopic level.
A novel co-extrusion process for the production of coaxially reinforced hollow profiles has been developed. Using this process, hybrid hollow profiles made of the aluminum alloy EN AW-6082 and the case-hardening steel 20MnCr5 (AISI 5120) were produced, which can be forged into hybrid bearing bushings by subsequent die forging. For the purpose of co-extrusion, a modular tooling concept was developed where steel tubes made of 20MnCr5 are fed laterally into the tool. This LACE (lateral angular co-extrusion) process allows for a variation of the volume fraction of the reinforcement by using steel tubes with different wall thicknesses, which enabled the production of compound profiles having reinforcement contents of either 14 vol.% or 34 vol.%. The shear strength of the bonding area of these samples was determined in push-out tests. Additionally, mechanical testing of segments of the hybrid profiles using shear compression tests was employed to provide information about the influence of different bonding mechanisms on the strength of the composite zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.