Alzheimer's disease is the most fatal neurodegenerative disorder wherein the process of amyloid-beta (Abeta) amyloidogenesis appears causative. Here, we present the 3D structure of the fibrils comprising Abeta(1-42), which was obtained by using hydrogen-bonding constraints from quenched hydrogen/deuterium-exchange NMR, side-chain packing constraints from pairwise mutagenesis studies, and parallel, in-register beta-sheet arrangement from previous solid-state NMR studies. Although residues 1-17 are disordered, residues 18-42 form a beta-strand-turn-beta-strand motif that contains two intermolecular, parallel, in-register beta-sheets that are formed by residues 18-26 (beta1) and 31-42 (beta2). At least two molecules of Abeta(1-42) are required to achieve the repeating structure of a protofilament. Intermolecular side-chain contacts are formed between the odd-numbered residues of strand beta1 of the nth molecule and the even-numbered residues of strand beta2 of the (n - 1)th molecule. This interaction pattern leads to partially unpaired beta-strands at the fibrillar ends, which explains the sequence selectivity, the cooperativity, and the apparent unidirectionality of Abeta fibril growth. It also provides a structural basis for fibrillization inhibitors.
Arterial thrombosis is considered to arise from the interaction of tissue factor (TF) in the vascular wall with platelets and coagulation factors in circulating blood. According to this paradigm, coagulation is initiated after a vessel is damaged and blood is exposed to vessel-wall TF. We have examined thrombus formation on pig arterial media (which contains no stainable TF) and on collagen-coated glass slides (which are devoid of TF) exposed to f lowing native human blood. In both systems the thrombi that formed during a 5-min perfusion stained intensely for TF, much of which was not associated with cells. Antibodies against TF caused Ϸ70% reduction in the amount of thrombus formed on the pig arterial media and also reduced thrombi on the collagencoated glass slides. TF deposited on the slides was active, as there was abundant fibrin in the thrombi. Factor VII ai , a potent inhibitor of TF, essentially abolished fibrin production and markedly reduced the mass of the thrombi. Immunoelectron microscopy revealed TF-positive membrane vesicles that we frequently observed in large clusters near the surface of platelets. TF, measured by factor X a formation, was extracted from whole blood and plasma of healthy subjects. By using immunostaining, TF-containing neutrophils and monocytes were identified in peripheral blood; our data raise the possibility that leukocytes are the main source of blood TF. We suggest that blood-borne TF is inherently thrombogenic and may be involved in thrombus propagation at the site of vascular injury.Tissue factor (TF) present in the arterial wall has been considered to be responsible for the initiation of the coagulation cascade and thrombus formation (1). The role of vascular TF in acute thrombosis and atherosclerosis has been proposed based on our previous studies (2-5). To investigate the role of circulating TF in thrombogenesis, we have used a system in which pig aortic media or collagen-coated slides were mounted in a laminar flow chamber and perfused with native human blood. We noted that when stained either with derivatized factor VII a (FVII a ) or with specific anti-TF antibodies, the thrombi contained large amounts of TF staining, whereas the media and collagen-coated slides were essentially negative. Thus, we surmised that the TF came from the blood; accordingly, we examined whole blood and plasma for TF activity that we have extracted and assayed. We conclude that there is circulating, potentially active TF in normal subjects. We present evidence that this pool is thrombogenic in model flow systems. We also present evidence suggesting the TF comes from leukocytes and hypothesize that the cell-surface TF is completely encrypted (6-8) but becomes available during thrombosis. METHODSReagents. Human recombinant FVII a was a gift from NovoNordisk, Copenhagen. Factor X was purified from human plasma (9). Affigel-15 was purchased from Bio-Rad. The phospholipids used for relipidation of TF consisted of 30% 1,2-dioleoyl-sn-glycero-3-phosphatidylserine and 70% 1,2-dioleoyl-sn-gl...
Parkinson's disease, the most common age-related movement disorder, is a progressive neurodegenerative disease with unclear etiology. Key neuropathological hallmarks are Lewy bodies and Lewy neurites: neuronal inclusions immunopositive for the protein α-synuclein. In-depth ultrastructural analysis of Lewy pathology is crucial to understanding pathogenesis of this disease. Using correlative light and electron microscopy/tomography on post-mortem human brain tissue from Parkinson's disease brain donors, we identified α-synuclein immunopositive Lewy pathology and show a crowded environment of membranes therein, including vesicular structures and dysmorphic organelles. Filaments interspersed between the membranes and organelles were identifiable in many, but not all aSyn inclusions. Crowding of organellar components was confirmed by STED-based superresolution microscopy, and high lipid content within α-synuclein immunopositive inclusions was corroborated by confocal imaging, CARS/FTIRimaging and lipidomics. Applying such correlative high-resolution imaging and biophysical approaches, we discovered an aggregated protein-lipid compartmentalization not previously described in the PD brain.
Although biotherapeutics have vast potential for treating brain disorders, their use has been limited due to low exposure across the blood-brain barrier (BBB). We report that by manipulating the binding mode of an antibody fragment to the transferrin receptor (TfR), we have developed a Brain Shuttle module, which can be engineered into a standard therapeutic antibody for successful BBB transcytosis. Brain Shuttle version of an anti-Aβ antibody, which uses a monovalent binding mode to the TfR, increases β-Amyloid target engagement in a mouse model of Alzheimer's disease by 55-fold compared to the parent antibody. We provide in vitro and in vivo evidence that the monovalent binding mode facilitates transcellular transport, whereas a bivalent binding mode leads to lysosome sorting. Enhanced target engagement of the Brain Shuttle module translates into a significant improvement in amyloid reduction. These findings have major implications for the development of biologics-based treatment of brain disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.