A historical perspective on the application of molecular dynamics (MD) to biological macromolecules is presented. Recent developments combining state-of-the-art force fields with continuum solvation calculations have allowed us to reach the fourth era of MD applications in which one can often derive both accurate structure and accurate relative free energies from molecular dynamics trajectories. We illustrate such applications on nucleic acid duplexes, RNA hairpins, protein folding trajectories, and proteinligand, protein-protein, and protein-nucleic acid interactions.
Fluorinated compounds are synthesized in pharmaceutical research on a routine basis and many marketed compounds contain fluorine. The present review summarizes some of the most frequently employed strategies for using fluorine substituents in medicinal chemistry. Quite often, fluorine is introduced to improve the metabolic stability by blocking metabolically labile sites. However, fluorine can also be used to modulate the physicochemical properties, such as lipophilicity or basicity. It may exert a substantial effect on the conformation of a molecule. Increasingly, fluorine is used to enhance the binding affinity to the target protein. Recent 3D-structure determinations of protein complexes with bound fluorinated ligands have led to an improved understanding of the nonbonding protein-ligand interactions that involve fluorine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.