Stainless steels are used in countless diverse applications for their corrosion resistance. Although they have extremely good general resistance, they are nevertheless susceptible to pitting corrosion. This localized dissolution of an oxide-covered metal in specific aggressive environments is one of the most common and catastrophic causes of failure of metallic structures. The pitting process has been described as random, sporadic and stochastic and the prediction of the time and location of events remains extremely difficult. Many contested models of pitting corrosion exist, but one undisputed aspect is that manganese sulphide inclusions play a critical role. Indeed, the vast majority of pitting events are found to occur at, or adjacent to, such second-phase particles. Chemical changes in and around sulphide inclusions have been postulated as a mechanism for pit initiation but such variations have never been measured. Here we use nanometre-scale secondary ion mass spectroscopy to demonstrate a significant reduction in the Cr:Fe ratio of the steel matrix around MnS particles. These chromium-depleted zones are susceptible to high-rate dissolution that 'triggers' pitting. The implications of these results are that materials processing conditions control the likelihood of corrosion failures, and these data provide a basis for optimizing such conditions.
The health effects of particle inhalation including urban air pollution and tobacco smoke comprise a significant public health concern worldwide, although the mechanisms by which inhaled particles cause premature deaths remain undetermined. In this study, we assessed the physicochemical interactions of fine airborne particles (PM(2.5)) and lung lining liquid using scanning electron microscopy, atomic force microscopy, and X-ray photon spectroscopy. We provide experimental evidence to show that lung lining liquid modifies the chemistry and attractive forces at the surface of PM(2.5), which leads to enhanced particle aggregation. We propose that this is an important protective mechanism that aids particle clearance in the lung.
The growth of thin dielectric layers on (100) Ge samples at temperatures lower than 450 °C by photoassisted oxidation with vacuum ultraviolet radiation emitted by a Xe silent discharge lamp has been investigated. The thickness of the grown layers increased with both the oxidation time and processing temperature. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy (XPS) indicated that the layers are mainly stoichiometric GeO2. XPS investigations also indicated the presence of a several-nanometer-thick substoichiometric oxide layer at the interface region for samples irradiated for short periods of time. Capacitance– and current–voltage measurement showed that layers thicker than 15 nm exhibited good electrical characteristics.
This study investigated the surface chemistry of urban fine particles (PM(2.5)), and quantified the adsorbed and desorbed species after exposure to bronchoalveolar lavage fluid (BALF). Urban background and roadside PM(2.5) samples of different mass concentration and total weight were collected in triplicate in the South Bronx region of New York City. Simultaneously, the concentrations of other atmospheric pollutants (CO, NO(x), SO(2), O(3), elemental carbon) were measured, and weather conditions were recorded. The collected PM(2.5) samples underwent one of three treatments: no treatment, treatment in vitro with BALF, or treatment in a saline solution (control). The surfaces of untreated, saline-treated, and BALF-treated PM(2.5) samples were analyzed using x-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). These results were then compared with ambient air pollutant concentrations, weather variables, selected BALF characteristics, and results from a previous London study conducted using identical preparation methods by XPS analysis only. Both XPS and ToF-SIMS detected PM(2.5) surface species and observed changes in surface concentrations after treatment. XPS analysis showed the surface of untreated urban PM(2.5) consisted of 79 to 87% carbon and 10 to 16% oxygen with smaller contributions of N, S, Si, and P in the samples from both background and roadside locations. A wider variety of other inorganic and organic species (including metals, aliphatic and aromatic hydrocarbons, and nitrogen-containing molecules) was detected with ToF-SIMS. Surface characteristics of particles from the roadside and background sites were very similar, except for higher (p <.05) nitrate concentrations at the roadside, which were attributable to higher roadside NO(x) concentrations. Comparable species and quantities were identified in a previous study of London PM(2.5), where PM(2.5) surface chemistry differed considerably depending on the source, particularly in surface concentrations of oxygen and trace species. After treatment with BALF the N-C signal detected by XPS analysis increased in the average by 372 +/- 203%, indicating significant surface adsorption of protein or other N-containing biomolecules. Lower (nonsignificant) N-C signals were observed for smoker BALF, compared to nonsmoker BALF. ToF-SIMS data confirmed protein adsorption after BALF treatment--smoker BALF resulted in lower levels of adsorbed proteins compared to nonsmoker BALF. ToF-SIMS also indicated an adsorption of phospholipid on the treated PM(2.5) surfaces. The primary phospholipid in BALF is dipalmitoylphospatidylcholine (DPPC), although positive identification was not possible due to low concentrations at the PM(2.5) surface. Oxygen content of PM(2.5) surfaces was the most significant determinant of both N-C and phospholipid adsorption. The XPS signal of the soluble species NH(+)(4), NO(2-)(3), Si, and S decreased in both saline- and BALF-treated samples, showing that these species may be bioavailable in the lu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.