Developmental changes in bimanual coordination were examined in four age groups: 6/7, 10/11, 14/15 years, and young adults. Temporal coupling was assessed through the stabilizing contributions of interlimb interactions related to planning, error correction, and reflexes during rhythmic wrist movements, by comparing various unimanual and bimanual tasks involving passive and active movements. Spatial coupling was assessed via bimanual line-circle drawing. With increasing age, temporal stability improved. Relative contributions of planning and reflex interactions to the achieved stability did not change, whereas error correction improved. In-phase and antiphase coordination developed at similar rates; implications of this result were discussed in terms of mirror-activity inhibition. Overall spatial drawing performance (circularity, variability, smoothness) improved with age, and spatial interference was smaller in adults than children. Whereas temporal coupling increased from 6/7 years to adulthood, spatial coupling changed mainly after 14/15 years. This difference in the development of temporal and spatial coupling corresponds to the anterior-posterior direction of corpus callosum myelination as reported in the literature.
Because bimanual coordinative stability is governed by interlimb coupling, we examined how learning a new pattern (90°) was reflected in changes in the underlying interlimb interactions. Three interlimb interaction sources were distinguished: integrated timing of feedforward control signals, error corrections based on perceived relative phase, and phase entrainment by contralateral afference. By comparing 4 tasks that involve these interactions to a different extent, changes in the stabilizing contributions of these coupling sources could be studied. Furthermore, we studied how the learning process and changes in the underlying interactions were influenced by attentional focus (internal vs. external), and we examined retention of the learned pattern and transfer to the mirror-symmetrical pattern (270°). Results showed that stability and accuracy of the new pattern increased significantly with learning, due to improved integrated timing and error correction. Integrated timing improved first, possibly providing a reference frame for the error corrections that subsequently became more effective. Despite some qualitative differences in the learning process, neither performance of the learned pattern nor the underlying interlimb interactions was influenced by attentional focus. Whereas the learned pattern improved directly after practice, transfer followed later, suggesting that a more general representation was formed at a slower rate after practice.
In the current study, we examined whether coupling influences resulting from unintended afference-based phase entrainment are affected by movement amplitude as such or by the amplitude relation between the limbs. We assessed entrainment strength by studying how passive movements of the contralateral hand influenced unimanual coordination with a metronome. Results showed that amplitude as such did not affect entrainment strength, whereas the amplitude relation between the hands did. Larger amplitudes of the passive hand relative to the active hand resulted in stronger entrainment. This dependence on relative amplitude implies that entrainment strength is not only based on the intensity of afferent signals generated in the entraining limb but also on the susceptibility of the entrained limb to these signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.