Upconversion core/shell nanocrystals with different mean sizes ranging from 15 to 45 nm were prepared via a modified synthesis procedure based on anhydrous rare-earth acetates. All particles consist of a core of NaYF :Yb,Er, doped with 18 % Yb and 2 % Er , and an inert shell of NaYF , with the shell thickness being equal to the radius of the core particle. Absolute measurements of the photoluminescence quantum yield at a series of different excitation power densities show that the quantum yield of 45 nm core/shell particles is already very close to the quantum yield of microcrystalline upconversion phosphor powder. Smaller core/shell particles prepared by the same method show only a moderate decrease in quantum yield. The quantum yield of 15 nm core/shell particles, for instance, is reduced by a factor of three compared to the bulk upconversion phosphor at high power densities (100 W cm ) and by approximately a factor of 10 at low power densities (1 W cm ).
We synthesized and characterized a set of ultrasmall hexagonal-phase NaGdF: 20% Yb, 2% Er upconversion nanoparticles with core diameters of 3.7 ± 0.5 nm. In order to assess passivation effects and the influence of possible core-shell intermixing and to identify optimum particle structures for combined imaging in the visible and near-infrared (vis-NIR: 410-850 nm) and short-wave infrared (SWIR: 1520 nm), NaYF shells of varying thicknesses (monolayer to 10 nm) were introduced and the influence of this parameter on the upconversion and downshifting photoluminescence of these particles was studied at different excitation power densities. This included excitation power-dependent emission spectra, slope factors, quantum yields, and excited state decay kinetics. These measurements revealed enhancement factors of the upconversion quantum yield of >10 000 in the low power region and an excitation power density-independent quantum yield of the downshifted emission at 1520 nm between 0.1 and 14%. The optimized shell thickness for combined vis and SWIR imaging was identified as 5 nm. Moreover, lifetimes and quantum yields can be continuously tuned by shell thickness which can be exploited for lifetime multiplexing and encoding. The fact that we did not observe a saturation of the upconversion quantum yield or the excited state decay kinetics with increasing shell thickness is ascribed to a strong intermixing of the active core with the inert shell during the shelling procedure. This indicates the potential of spectroscopic tools to detect cation intermixing.
The rational design of brighter upconversion nanoparticles (UCNPs) requires a better understanding of the radiationless deactivation pathways in these materials. Here, we demonstrate the potential of excitation power density (P)-dependent studies of upconversion (UC) luminescence intensities, slope factors, and absolute quantum yields (Φ) of popular β-NaYF:20% Yb,2% Er UCNPs of different surface chemistries in organic solvents, DO, and water as a tool to gain deeper insight into the UC mechanism including population and deactivation pathways particularly of the red emission. Our measurements, covering a P regime of three orders of magnitude, reveal a strong difference of the P-dependence of the ratio of the green and red luminescence bands (I) in water and organic solvents and P-dependent population pathways of the different emissive energy levels of Er. In summary, we provide experimental evidence for three photon processes in UCNPs, particularly for the red emission. Moreover, we demonstrate changes in the excited population dynamics via bi- and triphotonic processes dependent on the environment, surface chemistry, and P, and validate our findings theoretically.
A set of similarly sized (Yb3+, Nd3+, Er3+)-doped upconversion nanoparticles of different architecture were spectroscopically examined in water at broadly varied excitation power at 980 nm & 808 nm to study the sensitizer dependent penetration-depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.