Biochemical oxygen demand (BOD) has been shown to be an important variable in water quality management and planning. However, BOD is difficult to measure and needs longer time periods (5 days) to get results. Artificial neural networks (ANNs) are being used increasingly to predict and forecast water resource variables. The objective of this research was to develop an ANNs model to estimate daily BOD in the inlet of wastewater biochemical treatment plants. The plantscale data set (364 daily records of the year 2005) was obtained from a local wastewater treatment plant. Various combinations of daily water quality data, namely chemical oxygen demand (COD), water discharge (Q w ), suspended solid (SS), total nitrogen (N), and total phosphorus (P) are used as inputs into the ANN so as to evaluate the degree of effect of each of these variables on the daily inlet BOD. The results of the ANN model are compared with the multiple linear regression model (MLR). Mean square error, average absolute relative error, and coefficient of determination statistics are used as comparison criteria for the evaluation of the model performance. The ANN technique whose inputs are COD, Q w , SS, N, and P gave mean square errors of 708.01, average absolute relative errors of 10.03%, and a coefficient of determination 0.919, respectively. On the basis of the comparisons, it was found that the ANN model could be employed successfully in estimating the daily BOD in the inlet of wastewater biochemical treatment plants.
Physical disintegration of representative toilet papers was investigated in this study to assess their disintegration potential in sewer systems. Characterization of toilet papers from different parts of the world indicated two main categories as premium and average quality. Physical disintegration experiments were conducted with representative products from each category according to standard protocols with improvements. The experimental results were simulated by mathematical model to estimate best-fit values of disintegration rate coefficients and fractional distribution ratios. Our results from mathematical modeling and experimental work show that premium products release more amounts of small fibers and disintegrate more slowly than average ones. Comparison of the toilet papers with the tampon applicators studied previously indicates that premium quality toilet papers present significant potential to persist in sewer pipes. Comparison of turbulence level in our experimental setup with those of partial flow conditions in sewer pipes indicates that drains and small sewer pipes are critical sections where disintegration of toilet papers will be limited. For improvement, requirements for minimum pipe slopes may be increased to sustain transport and disintegration of flushable products in small pipes. In parallel, toilet papers can be improved to disintegrate rapidly in sewer systems, while they meet consumer expectations.
In this study soft computing techniques including, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were investigated for the prediction of Cr(VI) transport efficiency by novel Polymer Inclusion Membranes (PIMs). Transport experiments carried out by varying parameters such as time, film thickness, carrier type, carier rate, plasticizer type, and plasticizer rate. The predictive performance of ANN and ANFIS model was evaluated by using statistical performance criteria such as Root Mean Standard Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R 2). Moreover, Sensitivity Analysis (SA) was carried out to investigate the effect of each input on PIMs Cr(VI) removal efficiency. The proposed ANN model presented reliable and valid results, followed by ANFIS model results. RMSE and MAE values were 0.00556, 0.00163 for ANN and 0.00924, 0.00493 for ANFIS model in the prediction of Cr(VI) removal efficiency on testing data sets. The R 2 values were 0.973 and 0.867 on testing data sets by ANN and ANFIS, respectively. Results show that the ANN-based prediction model performed better than ANFIS. SA demonstrated that time; film thickness; carrier type and plasticizer type are major operating parameters having 33.61%, 26.85%, 21.07% and 8.917% contribution, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.