Introduction of new myeloma therapies offers new options for patients refractory to immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs). In this multicenter study, patients with relapsed multiple myeloma, who have received at least three prior lines of therapy, are refractory to both an IMiD (lenalidomide or pomalidomide) and a PI (bortezomib or carfilzomib), and have been exposed to an alkylating agent were identified. The time patients met the above criteria was defined as time zero (T). Five hundred and forty-three patients diagnosed between 2006 and 2014 were enrolled in this study. Median age at T was 62 years (range 31-87); 61% were males. The median duration between diagnosis and T was 3.1 years. The median number of lines of therapy before T was 4 (range 3-13). The median overall survival (OS) from T for the entire cohort was 13 (95% confidence interval (CI) 11, 15) months. At least one regimen recorded after T in 462 (85%) patients, with a median (95% CI) progression-free survival and OS from T of 5 (4, 6), and 15.2 (13, 17) months, respectively. The study provides the expected outcome of relapsed multiple myeloma that is refractory to a PI and an IMiD, a benchmark for comparison of new therapies being evaluated.
Treatment in medical oncology is gradually shifting from the use of non-specific chemotherapeutic agents towards an era of novel targeted therapy in which drugs and their combinations target specific aspects of the biology of tumor cells. Multiple myeloma (MM) has become one of the best examples in this regard, reflected in the identification of new pathogenic mechanisms, together with the development of novel drugs that are being explored from the preclinical setting to the early phases of clinical development. We review the biological rationale for the use of the most important new agents for treating MM and summarize their clinical activity in an increasingly busy field. First, we discuss data from already approved and active agents (including second- and third-generation- proteasome inhibitors, immunomodulatory agents (IMIDs) and alkylators). Then we focus on agents with novel mechanisms of action, such as monoclonal antibodies (MoAb), cell cycle specific drugs, deacetylase inhibitors, agents acting on the unfolded protein response, signaling transduction pathway inhibitors, and kinase inhibitors.
Among this plethora of new agents or mechanisms some are specially promising: Anti-CD38 MoAb, such as daratumumab, are the first antibodies with clinical activity as single agents in MM. Also the kinesin spindle protein inhibitor Arry-520 is effective in monotherapy as well as in combination with dexamethasone in heavily pretreated patients. Immunotherapy against MM is also being explored, and probably the most attractive example of this approach is the combination of the anti-CS1 MoAb elotuzumab with lenalidomide and dexamethasone, that has produced exciting results in the relapsed/refractory setting.
Bone marrow samples from 55 patients with multiple myeloma (MM) and 23 patients with monoclonal gammopathy of undertermined significance (MGUS) were evaluated with a broad panel of monoclonal antibodies. Plasma cells from 78% (43/55) of patients with MM strongly expressed the natural killer cell antigen CD56 (NKH-1, Leu-19). Of the 23 patients with MGUS, none showed strong CD56 reactivity, although three had weak reactivity in less than 20% of plasma cells. Myeloma cells expressing CD56 did not coexpress the CD57 or CD16 antigens. Patients with CD56-positive plasma cells had both indolent and aggressive disease. However, the 12 CD56-negative patients had predominantly aggressive disease with an unexpected preponderance of kappa Bence Jones only myeloma (5/10[50%] evaluable patients). Polyclonal plasma cells from non-neoplastic tissue sites (normal bone marrows, lymph nodes, tonsillar biopsies, and gut-mucosa biopsies) showed a near absence of CD56. We conclude that isolated, strong CD56 expression is common in MM, but not in MGUS or reactive plasma cells. The potential biologic importance of CD56 positivity in myeloma is reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.