Doubly-fed induction generator (DFIG)-based wind farms (WFs) are interfaced with power electronic converters. Such interfaces are attributed to the low inertia generated in the WFs under high penetration and that becomes prevalent in a fault scenario. Therefore, transient stability enhancement along with frequency stability in DFIG-based WFs is a major concern in the present scenario. In this paper, a cooperative approach consisting of virtual inertia control (VIC) and a modified grid-side converter (GSC) approach for low voltage ridethrough (LVRT) is proposed to achieve fault ride-through (FRT) capabilities as per the grid code requirements (GCRs) while providing frequency support to the grid through a synthetic inertia. The proposed approach provides LVRT and reactive power compensation in the system. The participation of the VIC in a rotor-side converter (RSC) provides frequency support to the DFIG-based WFs. The combined approach supports active power compensation and provides sufficient kinetic energy support to the system in a contingency scenario. Simulation studies are carried out in MATLAB/Simulink environment for symmetrical and unsymmetrical faults. The superiority of the proposed scheme is demonstrated through analysis of the performance of the scheme and that of a series resonance bridgetype fault current limiter (SR-BFCL). Index Terms--Virtual inertia controller (VIC), doubly-fed induction generator (DFIG), fault ride-through (FRT) capability, wind farm (WF), fault current limiter (FCL).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.