We use a simple device architecture based on a poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-coated indium tin oxide anode and a LiF/Al cathode to assess the effects of shell thickness on the properties of light-emitting diodes (LEDs) comprising CdSe/CdS core/shell nanocrystal quantum dots (NQDs) as the emitting layer. Specifically, we are interested in determining whether LEDs based on thick-shell nanocrystals, so-called "giant" NQDs, afford enhanced performance compared to their counterparts incorporating thin-shell systems. We observe significant improvements in device performance as a function of increasing shell thickness. While the turn-on voltage remains approximately constant for all shell thicknesses (from 4 to 16 CdS monolayers), external quantum efficiency and maximum luminance are found to be about one order of magnitude higher for thicker shell nanocrystals (≥13 CdS monolayers) compared to thinner shell structures (<9 CdS monolayers). The thickest-shell nanocrystals (16 monolayers of CdS) afforded an external quantum efficiency and luminance of 0.17% and 2000 Cd/m(2), respectively, with a remarkably low turn-on voltage of ~3.0 V.
Sodium beta-alumina (SBA) has high two-dimensional conductivity, owing to mobile sodium ions in lattice planes, between which are insulating AlO(x) layers. SBA can provide high capacitance perpendicular to the planes, while causing negligible leakage current owing to the lack of electron carriers and limited mobility of sodium ions through the aluminium oxide layers. Here, we describe sol-gel-beta-alumina films as transistor gate dielectrics with solution-deposited zinc-oxide-based semiconductors and indium tin oxide (ITO) gate electrodes. The transistors operate in air with a few volts input. The highest electron mobility, 28.0 cm2 V(-1) s(-1), was from zinc tin oxide (ZTO), with an on/off ratio of 2 x 10(4). ZTO over a lower-temperature, amorphous dielectric, had a mobility of 10 cm2 V(-1) s(-1). We also used silicon wafer and flexible polyimide-aluminium foil substrates for solution-processed n-type oxide and organic transistors. Using poly(3,4-ethylenedioxythiophene) poly(styrenesulphonate) conducting polymer electrodes, we prepared an all-solution-processed, low-voltage transparent oxide transistor on an ITO glass substrate.
Colloidal nanocrystals (NCs) of lead chalcogenides are a promising class of tunable infrared materials for applications in devices such as photodetectors and solar cells. Such devices typically employ electronic materials in which charge carrier concentrations are manipulated through “doping;” however, persistent electronic doping of these NCs remains a challenge. Here, we demonstrate that heavily doped n-type PbSe and PbS NCs can be realized utilizing ground-state electron transfer from cobaltocene. This allows injecting up to eight electrons per NC into the band-edge state and maintaining the doping level for at least a month at room temperature. Doping is confirmed by inter- and intra-band optical absorption, as well as by carrier dynamics. Finally, FET measurements of doped NC films and the demonstration of a p-n diode provide additional evidence that the developed doping procedure allows for persistent incorporation of electrons into the quantum-confined NC states.
One-dimensional ZnO nanostructure arrays such as nanowires, nanonails, and nanotrees, have been synthesized by oxygen assisted thermal evaporation of metallic zinc on a quartz substrate over a large area. Morphological evolution of ZnO nanostructures at different time scales and different positions of the substrates have been studied by electron microscopy. A self-catalyzed vapor-liquid-solid (VLS) process is believed to be responsible for the nucleation and subsequently a vapor-solid process is operative for further longitudinal growth. The photoluminescence spectrum showed a weak UV and a broad green emission peak at 3.25 and 2.49 eV, respectively. The latter was attributed to the presence of zinc interstitial defects. Electrical resistivity as a function of temperature showed activated mechanisms to be present. The electrical response of the ZnO nanonail arrays to different gases (CO, NO2, and H2S) indicated that there could be possible application as gas sensors for this material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.