Fat embolism and fat embolism syndrome (FES) are well-known complications of long bone fracture and surgery involving manipulation of skeletal elements. Many non-traumatic causes of FES have been suggested but they constitute only a small portion. FES presents with classical symptoms of petechiae, hypoxemia, central nervous system symptoms along with other features such as tachycardia and pyrexia. Diagnosis of FES relies on clinical judgment rather than objective findings such as emboli present in the retinal vessels on fundoscopy, fat globules present in urine and sputum, a sudden inexplicable drop in hematocrit or platelet values, increasing erythrocyte sedimentation rate.
Collection of air in the cranial cavity is called pneumocephalus. Although simple pneumocephalus is a benign condition, accompanying increased intracranial pressure can produce a life-threatening condition comparable to tension pneumothorax, which is termed tension pneumocephalus. We report a case of tension pneumocephalus after drainage of a cerebrospinal fluid hygroma. The tension pneumocephalus was treated with decompression craniotomy, but the patient later died due to the complications related to critical care. Traumatic brain injury and neurosurgical intervention are the most common causes of pneumocephalus. Pneumocephalus and tension pneumocephalus are neurosurgical emergencies, and anesthetics and intensive care management like the use of nitrous oxide during anesthesia and positive pressure ventilation have important implications in their development and progress. Clinically, patients can present with various nonspecific neurological manifestations that are indistinguishable from a those of a primary neurological condition. If the diagnosis is questionable, patients should be investigated using computed tomography of the brain. Immediate neurosurgical consultation with decompression is the treatment of choice.
Pulmonary artery aneurysm (PAA) is an uncommon entity and is usually congenital in origin or secondary to pulmonary arterial hypertension. Infections causing PAA are few, tuberculosis and bacterial infections being the common causative organisms. There have been few cases reported previously, in which the organism causing PAA was found to be a rare fungus called mucor. Pulmonary mucormycosis causing PAA is an infrequent and almost fatal complication as most of the diagnosis was made post mortem.This report brings out a case of pulmonary mucormycosis causing ruptured PAA in a patient with diabetes. This patient was cured by a timely treatment of a combination of surgery and medical therapy.
Background: Polytrauma from road accidents is a common cause of hospital admissions and deaths, frequently leading to acute kidney injury (AKI) and impacting patient outcomes. Methods: This retrospective, single-center study included polytrauma victims with an Injury Severity Score (ISS) >25 at a tertiary healthcare center in Dubai. Results: The incidence of AKI in polytrauma victims is 30.5%, associated with higher Carlson comorbidity index (P=0.021) and ISS (P=0.001). Logistic regression shows a significant relationship between ISS and AKI (odds ratio [OR], 1.191; 95% confidence interval [CI], 1.150–1.233; P<0.05). The main causes of trauma-induced AKI are hemorrhagic shock (P=0.001), need for massive transfusion (P<0.001), rhabdomyolysis (P=0.001), and abdominal compartment syndrome (ACS; P<0.001). On multivariate logistic regression AKI can be predicated by higher ISS (OR, 1.08; 95% CI, 1.00–1.17; P=0.05) and low mixed venous oxygen saturation (OR, 1.13; 95% CI, 1.05–1.22; P<0.001). The development of AKI after polytrauma increases length of stay (LOS)-hospital (P=0.006), LOS-intensive care unit (ICU; P=0.003), need for mechanical ventilation (MV) (P<0.001), ventilator days (P=0.001), and mortality (P<0.001). Conclusions: After polytrauma, the occurrence of AKI leads to prolonged hospital and ICU stays, increased need for mechanical ventilation, more ventilator days, and a higher mortality rate. AKI could significantly impact their prognosis.
Tracheoinnominate fistula (TIF) is a rare but potentially life-threatening complication after tracheostomy. TIF was mostly observed within 7–21 days after tracheostomy but can present even years after tracheostomy. The risk factors for TIF are high cuff pressure, mucosal trauma from malpositioned cannula tip, low tracheal incision, excessive neck movement (hyperextension), radiotherapy, prolonged intubation, and high-riding innominate artery (HRIA). HRIA is also a rare anatomical variation of the innominate artery (IA) whereas IA bifurcates above the sternoclavicular joint. We report a rare case of TIF in a patient with HRIA, who presented with airway bleeding 2 months after percutaneous tracheostomy (PT) and was successfully managed with aggressive resuscitation and midline sternotomy. Knowledge of anatomical variation of the aortic arch and its major branches is essential for the physician who is routinely performing or managing tracheostomy. All the health-care workers involved in the management of tracheostomy should bear this complication in mind while dealing with any airway bleed. We recommend the routine use of bedside neck ultrasonography before all PTs to locate any aberrant vessel within the vicinity of tracheostoma to prevent this complication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.