This study proposes an anti-slip control system for electric trains based on the fuzzy logic theory, which prevents the wheels from slipping during the acceleration and simultaneously tracks the desired speed profile. To improve the control performance, the train longitudinal velocity and the slip ratio are estimated. By using a Field Oriented Control (FOC), the angular speed of the traction motor is controlled. The fuzzy control system determines the desired angular speed of the traction motor as the reference input of FOC to obtain the desired slip ratio and track the desired speed profile. Simulation results show the effectiveness of the control system in various wheel-rail surface conditions based on the real parameters of ER24PC locomotive.
Wheel slip control in high-speed trains is used to reduce the acceleration time and produce the maximum traction motor power. For controlling slip in a complete model of a train consisting of the traction motors, it is needed to keep the adhesion coefficient as much as possible by controlling the input voltage. In this article, integrated sliding mode and direct torque controls are used to control the transient traction in a full model of a high-speed railcar consisting of a wagon, two bogies, four wheelsets, and four traction motors. Cosimulations in SIMPACK with MATLAB/Simulink are carried out to evaluate the performance of the designed control structure. By comparing the results of the open-loop and closed-loop simulations, it is shown the acceleration time of the high-speed railcar is decreased 26% and the production of the traction motor power is increased 32% for both dry and wet surface conditions. It is also shown that the designed control structure is stable and robust in the presence of uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.