Solar irradiance nowcasts can be derived with sky images from all sky imagers (ASI) by detecting and analyzing transient clouds, which are the main contributor of intra-hour solar irradiance variability. The accuracy of ASI based solar irradiance nowcasting systems depends on various processing steps. Two vital steps are the cloud height detection and cloud tracking. This task is challenging, due to the atmospheric conditions that are often complex, including various cloud layers moving in different directions simultaneously. This challenge is addressed by detecting and tracking individual clouds. For this, we developed two distinct ASI nowcasting approaches with four or two cameras and a third hybridized approach. These three systems create individual 3-D cloud models with unique attributes 2 including height, position, size, optical properties and motion. This enables us to describe complex multi-layer conditions. In this paper, derived cloud height and motion vectors are compared with a reference ceilometer (height) and shadow camera system (motion) over a 30 day validation period. The validation data set includes a wide range of cloud heights, cloud motion patterns and atmospheric conditions. Furthermore, limitations of ASI based nowcasting systems due to image resolution and image perspective constrains are discussed. The most promising system is found to be the hybridized approach. This approach uses four ASIs and a voxel carving based cloud modeling combined with a cloud segmentation independent stereoscopic cloud height and tracking detection. We observed for this approach an overall mean absolute error of 648 m for the height, 1.3 m/s for the cloud speed and 16.2° for the motion direction.
International audienceBecause of the cloud-induced variability of the solar resource, the growing contributions of photovoltaic plants to the overall power generation challenges the stability of electricity grids. To avoid blackouts, administrations started to define maximum negative ramp rates. Storages can be used to reduce the occurring ramps. Their required capacity, durability, and costs can be optimized by nowcasting systems. Nowcasting systems use the input of upward-facing cameras to predict future irradiances. Previously, many nowcasting systems were developed and validated. However, these validations did not consider aggregation effects, which are present in industrial-sized power plants. In this paper, we present the validation of nowcasted global horizontal irradiance (GHI) and direct normal irradiance maps derived from an example system consisting of 4 all-sky cameras (“WobaS-4cam”). The WobaS-4cam system is operational at 2 solar energy research centers and at a commercial 50-MW solar power plant. Besides its validation on 30 days, the working principle is briefly explained. The forecasting deviations are investigated with a focus on temporal and spatial aggregation effects. The validation found that spatial and temporal aggregations significantly improve forecast accuracies: Spatial aggregation reduces the relative root mean square error (GHI) from 30.9% (considering field sizes of 25 m2) to 23.5% (considering a field size of 4 km2) on a day with variable conditions for 1 minute averages and a lead time of 15 minutes. Over 30 days of validation, a relative root mean square error (GHI) of 20.4% for the next 15 minutes is observed at pixel basis (25 m2). Although the deviations of nowcasting systems strongly depend on the validation period and the specific weather conditions, the WobaS-4cam system is considered to be at least state of the art
The demand for accurate solar irradiance nowcast increases together with the rapidly growing share of solar energy within our electricity grids. Intra-hour variabilities, mainly caused by clouds, have a significant impact on solar power plant dispatch and thus on electricity grids. All sky imager (ASI) based nowcasting systems, with a high temporal and spatial resolution, can overall mean-absolute deviation (MAD) and root-mean-square deviation (RMSD) are 0.11 and 0.16 respectively for transmittance. The deviations are significantly lower for optically thick or thin clouds and larger for clouds with moderate transmittance between 0.18 and 0.585. Furthermore we validated the overall DNI forecast quality of the entire nowcasting system, using this transmittance estimation method, over the same data set with three spatially distributed pyrheliometers. Overall deviations of 13% and 21% are reached for the relative MAD and RMSD with a lead time of 10 minutes. The effects of the chosen data set on the validation results are demonstrated by means of the skill score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.