This research explored buildings for carbon neutrality to solve the global warming problem in the Third Solar Decathlon China (SDC). The methods were derived from subjective and objective evaluation aspects based on the competition rules. Then, the results of the concepts, technologies, and prospects of 15 buildings were output. The conclusion was summarized after a discussion as follows: (1) Solving global warming through carbon neutrality is widely required and research into this issue is required now. (2) Research methods were determined via five subjective and five objective contests with multiple sub-contests. (3) Fifteen buildings’ concepts, technologies, and prospects were determined regarding the carbon neutrality aspect. (4) A good architectural design concept was needed before building for carbon neutrality. (5) This research summarized the current development of architecture concepts and technologies in academia and industry. (6) Thirty-five kinds of active and passive technologies were determined, where PV as an active method and modular assembly as a passive method were the most used in this competition. (7) The technologies used with a low frequency, such as wind turbine, Stirling engine, hydrogen fuel cell, UHPC, PCM, and SST walls technologies, also need further attention. (8) The prospect of carbon neutrality, especially for energy production in residential buildings, may shift people’s passive acceptance of carbon neutrality to active energy production. (9) Using ANP to produce the SDC ranking may be considered for more scientific investigations to demonstrate the carbon neutrality effect. (10) The limitations will continue to be researched in the future. Finally, this research aimed to make a contribution to solving the global warming for sustainable development.
The spatial pattern of Weizi settlements features distinct regional characteristics. Moreover, it contains profound wisdom in terms of traditional construction; therefore, studies on its association with the microclimate have important implications for improving the quality of human settlements. In the present study, Guanweizi Village in the Xinyang City of Henan Province was used as an example to analyze and evaluate the thermal comfort of green spaces. The impact of peripheral water bodies on the thermal comfort of outdoor green spaces in the settlement was studied, and the association between the components of outdoor green spaces and physiological equivalent temperature as an indicator of thermal comfort was explored. Further, factors negatively affecting the thermal comfort of green spaces were analyzed through the grid method. Thermal comfort in the Weizi settlement is somewhat correlated with the coverage of water bodies, roads, soil, greening, and buildings. Increasing the water area and creating multi-level greening spaces are effective measures to improve the thermal comfort of green spaces in the settlement. Our findings provide a theoretical basis and a pioneering example for future practices of environment design for human settlements.
Climate change has reduced the comfort of community environments, and there is an urgent need to improve the health and well-being of low-income residents through design and technical measures. Therefore, this paper conducts research in the context of an ongoing social housing renovation project in Aosta, Italy, in a cold winter and hot summer Alpine environment. The study combined interviews, field measurements, and multiple software simulations to analyze the home of an older adult experiencing energy deprivation. The study found that the indoor acoustic environment quality meets the requirements of various sound-related standards. Still, the lighting and thermal environment must be designed to reduce glare and western sun exposure, and the air quality could improve. Residents’ demand for renovation is low technology, low cost, and high comfort. Therefore, suggestions for combining active and passive transformation measures and maximizing the use of climate and resources are proposed. The lighting and thermal environment are optimized based on the green wisdom of the Haylofts building of the Walser family in the Alps: increase ventilation and reduce indoor air age to improve air quality. Overall, a comprehensive assessment of extreme climatic conditions facilitates the quantitative and qualitative study and control of social housing environments, improves occupant comfort, and decarbonizes such social building stock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.