SynopsisThe solubility parameter and glass transition temperature of l,2-polybutadiene with different 1,a-unit content have been measured. T, increases with increasing 1,Zunit content, whereas no essential change of solubility parameter has been observed. So, it may be concluded that chain flexibility arising from internal rotation about single bond is the sole factor which determines glass transition. Chain flexibility was then studied by computation of energy of rotational isomerization E and the steric factor E characterizing hindrance to internal rotation. Finally, the potential barrier to internal rotation U was obtained by correlating 6 and c via Tg. The results are shown in Table VI. v , c and U all increase with increasing 1,2-unit content indicating rising of Tg is a result of increasing chain stiffness. Determination of the solubility parameter of 1,2polybutadiene by viscometry with toluene-cyclohexane (similar molar volume) as mixed solvent was examined and proved to be reliable. The exponent a in the Mark-Houwink equation for 1,2-polybutadiene-toluene system was estimated from the solubility parameter of polymer and solvent according to the method of van Krevelen and Hoftzd6 and found to be 0.725. This value of a was used as a first approximation for the calculation of molecular weights from GPC data. The Mark-Houwink equations finally established for the system, 1,2-polybutadiene-toluene (30°C) with different 1,2-unit contents are given in eqs. (8)-(10).
Gas Chromatosraphy (GC) using a polymer as the stationary phase to reveal the properties of the polymer — known as Inverse Gas Chromatography (IGC) — is in contrast to conventional GC where gaseous components in the mobile phase are separated and studied. Figure l(a) and l(b) are schematic diagrams showing the arrangement of apparatus in a gas Chromatograph for IGC. The column is filled with packings consisting of thin layer of polymer coated onto an inert support, typically Chromosorb W, Chromosorb G (70 ∼ 80 mesh, acid washed and dimethyldichlorosilane treated), or Teflon. The carrier gas, such as N2, H2, or He, acts as the mobile phase. The solvent, injected as a sharp pulse and vaporized immediately into the carrier gas stream at the entrance of the column, is called the probe. As the probe is carried forward, it is partitioned between the mobile gas phase and the stationary polymer phase. The time required to elute the probe through the column is called the retention time (elution is monitored in the detector and reflected on the recorder or integrator as a peak maximum). The corresponding amount of carrier gas needed is called the retention volume. The detector for the probe may be a thermal conductivity cell (TCD) or flame ionization detector (FID). When an FID is used, the flow of gas is diverted to the flow meter before it reaches the detector as shown in Figure l(b). Some notes on the experimental techniques will be discussed in Section IX. GC has been classified into Gas-Liquid Chromatography (GLC) and Gas-Solid Chromatography (GSC) according to whether the stationary phase is a liquid or a solid, respectively. In IGC, the process is GLC when the temperature of the polymer under investigation is far above its glass transition temperature Tg. The retention is due to absorption of the solvent vapor into the polymer bulk (an amorphous polymer above Tg is viewed as a liquid). When the temperature of the polymer is well below its Tg, the process is GSC and the retention mechanism becomes adsorption of the vapor onto the polymer surface. We shall initially discuss the GLC of polymers and then extend our discussions to GSC. Important applications of IGC to polymer research have been the studies of the thermodynamics of polymer-solvent and polymer-polymer interactions via GLC.
Background As the most common malignant tumor of primary renal tumor, renal cell carcinoma (RCC) is the highly invasive disease with high mortality. AKT is a serine/threonine kinase that play a critical role in the phosphoinositide 3-kinase (PI3K) signaling pathway, and it is an attractive target for RCC treatment. The aim of present study was to investigate the effect of AKT silence on malignant behavior of renal cell carcinoma cells. Methods AKT expression was quantified by immunohistochemistry in tumor tissues and normal tissues. The human RCC cell lines Caki-2 cell were chosen for this study. The optimal silencing siRNA was subsequently selected by RT-qPCR and western blot. The effect of AKT silence on RCC cells was investigated by CCK8 assay, transwell assay, scratch test and flow cytometry. The AKT1 expression in human renal cell carcinoma tissue was detected by immunohistochemical staining. Results The AKT in Caki-2 cells was silenced successfully. The results shown AKT silence could inhibit cell proliferation, invasion, and, migration. In addition, AKT silence could promote Caki-2 cell apoptosis with prevention of RCC cells move from G1 phase to S phase. Immunohistochemical staining revealed significant difference of expression of AKT1 in RCC tissues and normal renal tissues. Taken together, AKT family members might involve in malignant growth of RCC, and might be a potential therapeutic target. Conclusion Our data show that AKT silence inhibited cell proliferation, invasion, and, migration of Caki-2 cell, and promoted Caki-2 cell apoptosis. Moreover, AKT silence prevented RCC cells move from G1 phase to S phase. Therefore, AKT may act as an effective therapeutic target for RCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.