Surface plasmons in graphene provide a compelling strategy for advanced photonic technologies thanks to their tight confinement, fast response and tunability. Recent advances in the field of all-optical generation of graphene’s plasmons in planar waveguides offer a promising method for high-speed signal processing in nanoscale integrated optoelectronic devices. Here, we use two counter propagating frequency combs with temporally synchronized pulses to demonstrate deterministic all-optical generation and electrical control of multiple plasmon polaritons, excited via difference frequency generation (DFG). Electrical tuning of a hybrid graphene-fibre device offers a precise control over the DFG phase-matching, leading to tunable responses of the graphene’s plasmons at different frequencies across a broadband (0 ~ 50 THz) and provides a powerful tool for high-speed logic operations. Our results offer insights for plasmonics on hybrid photonic devices based on layered materials and pave the way to high-speed integrated optoelectronic computing circuits.
Soliton frequency combs generated in microresonators offer powerful tools for optical metrology, due to the high time‐frequency resolution. Here, via exciting the intracavity Brillouin laser in a high Q monolithic fiber resonator, a pair of orthogonal Kerr soliton combs is generated, which share the same repetition (frep ≈ 1.001 GHz) due to the soliton trapping but different central wavelengths (≈ 9.278 GHz). They offer rich dual‐comb beat notes with minimum phase noise down to −166.5 dBc Hz−1@1 MHz. Thanks to the geometric flexibility of the monolithic fiber resonator, the orthogonal soliton pair is found to be mechanically controllable with high precision. Specifically, by applying external stress on the microcavity in a range of ≈ 0–7.33 mN, the difference of their carrier‐envelope‐offset frequencies (Δfceo) is linearly tunable with a response of 0.3 kHz µN−1, meanwhile, tunability of the frep reaches 0.4 kHz µN−1. Such an orthogonally polarized dual soliton with stress controllability combining Brillouin excitation and parametric oscillation can offer a miniature all‐in‐fiber tool for wide applications ranging from frequency‐adjustable photonic microwave sources to highly sensitive gyroscopes.
Surface plasmons in graphene provide a compelling strategy for advanced photonic technologies thanks to their tight confinement, fast response and tunability. Recent advances in the field of all-optical generation of graphene’s plasmons in planar waveguides offer a promising method for high-speed signal processing in nanoscale integrated optoelectronic devices. Here, we use two counter propagating frequency combs with temporally synchronized pulses to demonstrate deterministic all-optical generation and electrical control of multiple plasmon polaritons, excited via difference frequency generation (DFG). Electrical tuning of a hybrid graphene-fiber device offers a precise control over the DFG phase-matching, leading to tunable responses of the graphene’s plasmons at different frequencies and provides a powerful tool for high-speed logic operations. Our results offer new insights for plasmonics on hybrid photonic devices based on layered materials and pave the way to high-speed integrated optoelectronic computing circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.