Kai-Xin-San (KXS) is a traditional Chinese medicine that has been widely used for the treatment of emotion-related disease. However, the underlying mechanism remains largely unknown. The present study aimed to examine whether phospho-cAMP response element-binding protein (pCREB) and upstream components, such as extracellular signal-regulated kinase (ERK), phospho-ERK (pERK), phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase 3β (GSK3β) and pGSK3β are associated with the antidepressive effect of KXS. In total, 24 male Wistar rats were randomly divided into three groups, including control (n=8, no treatment), induced with chronic unpredictable mild stress (CMS) (n=8), and CMS rats treated with KXS at dosage of 370 mg/kg/day orally. Primary hippocampal neuronal cultures were prepared from Wistar rats for cell survival and proliferation assays. In KXS rats, increased protein expression levels of pCREB, BDNF and tyrosine receptor kinase B (TrkB) were observed in the hippocampus and prefrontal cortex, compared with the CMS model group. Furthermore, increased expression levels of ERK, pERK, PI3K, Akt, and GSK3β were also detected in the hippocampus and prefrontal cortex of KXS-treated rats compared with CMS model rats and in primary hippocampal neuronal cells treated with KXS. These results suggest that pCREB and upstream components, including TrkB/ERK/CREB and TrkB/PI3 K/CREB, may contribute to the antidepressive effect induced by KXS. Further studies are required to confirm these findings.
In recent years, inhibitors of the BET bromodomain proteins, such as BRD4 inhibitors, have demonstrated robust antitumor activity. JQ-1, a representative small molecular BRD4 inhibitor, is also effective to block PD-1/PD-L1 signaling by significantly decreasing the PD-L1 expression on tumor cells. However, toxicity of BRD4 inhibitors on lymphoid and hematopoietic tissues limits their clinical usage. In this research, we designed and studied an immunogenic BRD4 inhibitor, SZU-119, by coupling JQ-1 with a TLR7 agonist, SZU-101. In vitro, SZU-119 stimulated the production of cytokines in mouse BMDCs and spleen lymphocytes, and inhibited the expression of PD-L1 in mouse B16 tumor cells. In vivo, SZU-119 suppressed the B16 tumor growth at both injected and uninjected sites, and prolonged the survival time of mice. SZU-119 elevated the number of total CD8 + and IFN-γ + CD8 + T cells in spleens, with greater CTL cytotoxicity to B16 tumor cells. It was also observed that the infiltration of CD8 + T cells was increased in tumors at both local and distant sites, and the PD-L1 expression was decreased in tumor cells at the primary site. In conclusion, we have demonstrated that SZU-119 activated the innate immune cells, kept efficacy of PD-L1 blockade and abrogated immune toxicity, showing more potent antitumor effects than the simple mixture of SZU-101 and JQ-1 in a mouse melanoma model. Our work provides new insights for the development of anti-melanoma drugs that concurrently target innate and adaptive immunity.
Depression has been associated with reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. Previous studies have demonstrated that the herbal medicine formula, ‘kaixinsan' (KXS), could ameliorate the severity of depression and increase cAMP response element-binding protein expression. There is direct evidence suggesting that the reduction of the BDNF protein in specific brain sites can provoke depressive-like behaviour or affect neurogenesis in vivo. However, the biological mechanisms between the antidepressant and neuroprotective effect of KXS and the alterations in BDNF levels in in vivo and in vitro models remain unclear. Using BDNF knockdown mediated by lentiviral vectors (LV-shBDNF-3) transfected with primary hippocampal neurons and following injection into the dentate gyrus of the hippocampus, it was demonstrated that a reduction in BDNF expression affects cell viability and animal behaviours associated with depression. During treatment with KXS after the lentiviral shRNA silencing of BDNF in cell and animal, cell viability, body weight, the sucrose preference test (SPT), the open field test (OFT) the Morris Water Maze (MWM) task and BDNF expression were measured. KXS attenuated LV-shBDNF-3-induced cell death in primary hippocampal neurons and also improved the sucrose intake in SPT, ambulatory response in OFT and learning ability in MWM against LV-shBDNF-3-induced depressive-like syndromes. Moreover, immunoblot analysis confirmed that KXS could reverse LV-shBDNF-induced BDNF reduction either in vitro or in vivo. These findings provide substantial evidence for supporting a neurotrophic hypothesis of depression and specify BDNF targets for potential antidepressant interventions. Moreover, the antagonism between LV-shRNA BDNF knockdown and KXS may depend on multiple compounds with synergistic mechanisms that modulate the different signal transduction networks directly or indirectly, increasing BDNF expression and exerting its neuroprotective and antidepressant-like effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.