A simple approach to wafer-scale self-cleaning antireflective hierarchical silicon structures is demonstrated. By employing the KOH etching and silver catalytic etching, pyramidal hierarchical structures were generated on the crystalline silicon wafer, which exhibit strong antireflection and superhydrophobic properties after fluorination. Furthermore, a flexible superhydrophobic substrate was fabricated by transferring the hierarchical Si structure to the NOA 63 film with UV-assisted imprint lithography. This method is of potential application in optical, optoelectronic, and wettability control devices.
Abstract:Chitosan-based active films were developed by incorporation of carvacrol (10 g/L), pomegranate peel extract (PPE, 10 g/L) and carvacrol + PPE (10 g/L of each) and their physical, antioxidant and antimicrobial properties were investigated. Incorporation of carvacrol and carvacrol + PPE into the films significantly decreased the water vapor permeability, tensile strength and percentage of elongation at break. Incorporation of carvacrol, PPE and carvacrol + PPE into the films decreased the transparency, but significantly increased the total phenol content and antioxidant activity. All the films, with the exception of PPE-incorporated film, exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, the antibacterial activity against Staphylococcus aureus of the film incorporated with carvacrol + PPE was moderately higher than that incorporated with carvacrol or PPE alone, suggesting a synergistic action between carvacrol and PPE.
It is demonstrated that silver nanoparticle (SNP) arrays fabricated by combining nanoimprint lithography and electrochemical deposition methods can be used as substrates for metal-enhanced fluorescence, which is widely used in optics, sensitive detection, and bioimaging. The method presented here is simple and efficient at controlling the nanoparticle density and interparticle distance within one array. Furthermore, it is found that the fluorescence intensity can be tuned by engineering the feature size of the SNP arrays. This is due to the different coupling efficiency between the emission of the fluorophores and surface plasmon resonance band of the metallic nanostructures.
Light relief! Mesoporous silica materials equipped with photoresponsive cucurbit[7]uril-pseudorotaxane nanovalves operate in biological media to trap cargo molecules within nanopores, but undergo controlled release when irradiated with light of a suitable wavelength (see figure). Significantly, a "ladder"-release pattern is obtained to balance maximal therapeutic efficacy and minimal dose frequency in the development of "pulsed" drug therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.