The scientific research process usually begins with an examination of the advanced, which may include voluminous publications. Summarizing scientific articles can assist researchers in their research by speeding up the research process. The summary of scientific articles differs from the abstract text in general due to its specific structure and the inclusion of cited sentences. Most of the important information in scientific articles is presented in tables, statistics, and algorithm pseudocode. These features, however, rarely appear in the standard text. Therefore, a number of methods that consider the value of the structure of a scientific article have been suggested that improve the standard of the produced summary. This paper makes use of clustering algorithms to handle CL- SciSumm 2020 and longsumm 2020 tasks for summarization of scientific documents. There are three well-known clustering algorithms that are employed to tackle CL- SciSumm 2020 and LongSumm 2020 tasks, and several sentences recording functions, with textual deduction, are used to retrieved phrases from each cluster to generate summary.
Emotion recognition is added a new dimension to the sentiment analysis. This paper presents a multi-modal human emotion recognition web application by considering of three traits includes speech, text, facial expressions, to extract and analyze emotions of people who are giving interviews. Now a days there is a rapid development of Machine Learning, Artificial Intelligence and deep learning, this emotion recognition is getting more attention from researchers. These machines are said to be intelligent only if they are able to do human recognition or sentiment analysis. Emotion recognition helps in spam call detection, blackmailing calls, customer services, lie detectors, audience engagement, suspicious behavior. In this paper focus on facial expression analysis is carried out by using deep learning approaches with speech signals and input text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.