Microbial biomass and soil respiration rate decreased after application of 150 kg NH4NO3–N∙ha−1 to different coniferous forest podzols. The decrease was already found 3 months after fertilization and was still evident after 3–5 years. Changes in pH, organic matter, or water content in the soils could not explain the decreases. In laboratory experiments, several unfertilized forest soils were treated with 2 mg of NH4NO3–N or of urea–nitrogen∙g wet soil−1. The ammonium nitrate addition resulted in severe depressions of the respiration rates during and up to 175 days of incubation and the decrease was evident after about 1 week. The urea treatment initially increased the respiration rate of the soils, but this appeared to be a transitory effect.
During phacoemulsification cavitation bubbles are formed. These bubbles are believed to be one source of damage to corneal endothelium seen after phacoemulsification. Free radicals are induced whenever cavitation bubbles implode. The aim of this study was to confirm the initiation of free radicals by phacoemulsification and to correlate the power of ultrasound in the phacoemulsification process to the amount of free radicals formed, using both in vitro and in vivo techniques. The formation of free radicals was determined by adding luminol to a buffer and measuring the chemoluminescence in vitro and in rabbit eyes (Lumacounter 2080 or a single-photon-counting apparatus) during phacoemulsification. The data obtained show that free radicals are formed during phacoemulsification and that the amount of free radicals correlates with the power of ultrasound. Furthermore, the radical formation could be inhibited by the radical scavengers SOD, Healon and Healon GV. These results were achieved both in vitro in the test tube and in vivo in rabbit eyes. By showing that the addition of SOD to the irrigation buffer during phacoemulsification decreases the corneal endothelial cell damage, we show that free radicals could have a role in postoperative complications seen clinically.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Gene vaccination encounters problems different from those of gene therapy since both a short half-life of the gene and a strong immune response to the gene product are desirable. We have evaluated a DNA vaccine consisting of seven plasmids encoding nine HIV-1 proteins. Using a needle-free delivery device, the Biojector, together with recombinant mouse GM-CSF, this vaccine induced strong gp160 Env- and p24 Gag-specific cellular and humoral immune responses in mice. The rGM-CSF was crucial for inducing both antibodies and antigen-specific CD8(+) T cell responses against both gp160 and p24. A GMP-produced lot of this vaccine, intended for human use, was delivered intradermally or intramuscularly into BALB/c mice at a GLP-accredited animal facility. This vaccine induced strong cellular responses independent of the route of immunization; moreover, no signs of toxicity were detected after histopathological examination of various tissues. Overall, the results indicate that the intradermal delivery of multigene/multisubtype HIV DNA in combination with recombinant GM-CSF is a safe and efficacious strategy for inducing high levels of specific CD8(+) T cells and unusually high titers of antibodies. This vaccine has been approved by the Swedish Medicinal Products Agency and is currently in a Phase I clinical trial.
Five bird species were examined in order to ascertain if any changes in flight muscle catabolism take place between breeding season and migration. Two different patterns were discovered. The first consists of a high oxidative capacity and a low glycolytic and anaerobic capacity during migration. The converse occurs during the breeding season, i.e. low oxidative, high glycolytic and anaerobic capacity. The pattern was found in those species that deposit large amounts of fat prior to migration. The second pattern was similar to the first, but there was no change in fatty acid oxidation capacity between breeding season and migration. The pattern was found in those species that do not deposit much fat towards migration. These changes are believed to reflect differences in migration strategy and differences in locomotory activity during different seasons. Deviations from these patterns are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.