Heterogenous electrocatalysts based on transition metal sulfides (TMS) are being actively explored in renewable energy research because nanostructured forms support high intrinsic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review article, the authors describe how researchers are working to improve the This article is protected by copyright. All rights reserved. 2 performance of TMS-based materials by manipulating its internal and external nanoarchitectures. A general introduction to the water splitting reaction is initially provided to explain the most important parameters in accessing the catalytic performance of nanomaterials catalysts. Later, the general synthetic methods used to prepare TMS-based materials is explained in order to delve into the various strategies being used to achieve higher electrocatalytic performance in HER. Complementary strategies can be used to increase the OER performance of TMS, resulting in bifunctional water-splitting electrocatalysts for both HER and OER. Finally, the current challenges and future opportunities of TMS materials in the context of water splitting are summarized. The authors aim to provide insights gathered in the process of studying TMS, and describe valuable guidelines for engineering other kinds of nanomaterial catalysts for energy conversion and storage technologies.
Monodisperse cadmium sulphide (CdS) quantum dots (QDs) with a tunable size from 1.4 to 4.3 nm were synthesized by a non-injection method, and their surface states were characterized by photoluminescence spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The steady state photoluminescence study identified that the proportion of the trap state emission increased with the QD size decrease, while from the photoluminescence decay study, it appeared that the trap state emission results from the emission via a surface deep trap state. The XPS measurements revealed the existence of surface Cd with sulfur vacancy sites which act as electron trap sites, and the population of these sites increases with the QD size decrease. These results are consistent to conclude that the trap state emission mainly originates from the surface deep trapped electrons at the surface Cd with sulfur vacancy sites.
Photoreduction of CO 2 to fuels offers a promising strategy for managing the global carbon balance using renewable solar energy. But the decisive process of oriented photogenerated electron delivery presents a considerable challenge. Here, we report the construction of intermolecular cascaded π-conjugation channels for powering CO 2 photoreduction by modifying both intramolecular and intermolecular conjugation of conjugated polymers (CPs). This coordination of dual conjugation is firstly proved by theoretical calculations and transient spectroscopies, showcasing alkynyl-removed CPs blocking the delocalization of electrons and in turn delivering the localized electrons through the intermolecular cascaded channels to active sites. Therefore, the optimized CPs (N-CP-D) exhibiting CO evolution activity of 2247 μmol g −1 h −1 and revealing a remarkable enhancement of 138-times compared to unmodified CPs (N-CP-A).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.