The Iowa Flood Center (IFC), established following the 2008 record floods, has developed a real-time flood forecasting and information dissemination system for use by all Iowans. The system complements the operational forecasting issued by the National Weather Service, is based on sound scientific principles of flood genesis and spatial organization, and includes many technological advances. At its core is a continuous rainfall–runoff model based on landscape decomposition into hillslopes and channel links. Rainfall conversion to runoff is modeled through soil moisture accounting at hillslopes. Channel routing is based on a nonlinear representation of water velocity that considers the discharge amount as well as the upstream drainage area. Mathematically, the model represents a large system of ordinary differential equations organized to follow river network topology. The IFC also developed an efficient numerical solver suitable for high-performance computing architecture. The solver allows the IFC to update forecasts every 15 min for over 1,000 Iowa communities. The input to the system comes from a radar-rainfall algorithm, developed in-house, that maps rainfall every 5 min with high spatial resolution. The algorithm uses Level II radar reflectivity and other polarimetric data from the Weather Surveillance Radar-1988 Dual-Polarimetric (WSR-88DP) radar network. A large library of flood inundation maps and real-time river stage data from over 200 IFC “stream-stage sensors” complement the IFC information system. The system communicates all this information to the general public through a comprehensive browser-based and interactive platform. Streamflow forecasts and observations from Iowa can provide support for a similar system being developed at the National Water Center through model intercomparisons, diagnostic analyses, and product evaluations.
Rainfall maps that are derived from satellite observations provide hydrologists with an unprecedented opportunity to forecast floods globally. However, the limitations of using these precipitation estimates with respect to producing reliable flood forecasts at multiple scales are not well understood. To address the scientific and practical question of applicability of space-based rainfall products for global flood forecasting, a data evaluation framework is developed that allows tracking the rainfall effects in space and time across scales in the river network. This provides insights on the effects of rainfall product resolution and uncertainty. Obtaining such insights is not possible when the hydrologic evaluation is based on discharge observations from single gauges. The proposed framework also explores the ability of hydrologic model structure to answer questions pertaining to the utility of space-based rainfall observations for flood forecasting. To illustrate the framework, hydrometeorological data collected during the Iowa Flood Studies (IFloodS) campaign in Iowa are used to perform a hydrologic simulation using two different rainfall–runoff model structures and three rainfall products, two of which are radar based [stage IV and Iowa Flood Center (IFC)] and one satellite based [TMPA–Research Version (RV)]. This allows for exploring the differences in rainfall estimates at several spatial and temporal scales and provides improved understanding of how these differences affect flood predictions at multiple basin scales. The framework allows for exploring the differences in peak flow estimation due to nonlinearities in the hydrologic model structure and determining how these differences behave with an increase in the upstream area through the drainage network. The framework provides an alternative evaluation of precipitation estimates, based on the diagnostics of hydrological model results.
With a very modest investment in computer hardware and the open source local data manger (LDM) software from UCAR's Unidata Program Center, an individual researcher can receive a variety of NEXRAD Level III gridded rainfall products, and the unprocessed Level II data in real-time from most NEXRAD radars. Additionally, the National Climatic Data Center has vast archives of these products and Level II data. Still, significant obstacles remain in order to unlock the full potential of the data. One set of obstacles is related to effective management of multi-terrabyte data sets: storing, compressing, and backing up. A second set of obstacles, for hydrologists and hydrometeorologists in particular, is that the NEXRAD Level III products are not well suited for application in hydrology. There is a strong need for the generation of highquality products directly from the Level II data with well-documented steps that include quality control, removal of false echoes, rainfall estimation algorithms with variety of corrections, coordinate conversion and georeferencing, conversion to a convenient data format(s), and integration with GIS. For hydrologists it is imperative that these procedures are basin-centered as opposed to radar-centered. Thirdly, the amount of data present in a multi-year, multi-radar dataset is such that simple cataloging and indexing of the data is not sufficient. Rather, sophisticated metadata extraction and management techniques are required. The authors describe and discuss the Hydro-NEXRAD software system that addresses the above three challenges. With support from the National Science Foundation through its ITR program, the authors are developing a basin-centered framework for addressing all these issues in a comprehensive manner, tailored specifically for use of NEXRAD data in hydrology and hydrometeorology. Through a flexible web interface users can search a large metadata database base, managed by a World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat
Hydro-NEXRAD is a prototype software system that provides hydrology and water resource communities with ready access to the vast data archives of the U.S. weather radar network known as NEXRAD (Next Generation Weather Radar). This paper describes radar-rainfall estimation algorithms and their modular components used in the Hydro-NEXRAD system to generate rainfall products to be delivered to users. A variety of customized modules implemented in Hydro-NEXRAD perform radar-reflectivity data processing, produce radar-rainfall maps with user-requested space and time resolution, and combine multiple radar data for basins covered by multiple radars. System users can select rainfall estimation algorithms that range from simple ('Quick Look') to complex and computing-intensive ('Hi-Fi'). The 'Pseudo NWS PPS' option allows close comparison with the algorithm used operationally by the US National Weather Service. The 'Custom' algorithm enables expert users to specify values for many of the parameters in the algorithm modules according to their experience and expectations. The Hydro-NEXRAD system, with its rainfall-estimation algorithms, can be used by both novice and expert users who need rainfall estimates as references or as input to their hydrologic modelling and forecasting applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.