Extensins and kindred hydroxyproline-rich glycoproteins occur in dicot cell walls mainly as insoluble integral components that may form an intermolecularly cross-linked network interpenetrated by other polymers. Extensins also occur in muro as a small pool of soluble monomeric precursors to network extensin. These precursors were prepared in milligram quantities by salt elution from the surface of intact cells grown as tomato suspension cultures. Based on an FPLC (Superose-6) gel filtration assay of cross-linked extensin oligomers, a pl 4.6 extensin cross-linking peroxidase isozyme was partially purified from the culture growth medium. Purification involved: volume reduction, ultracentrifugation to remove pectin and co-adsorbed cationic peroxidase, followed by chromatography of anionic extensin peroxidase (pl 4.6) on DEAE-Trisacryl and TSK-gel DEAE-5PW columns. With tomato P1 extensin as substrate and 60 microM H2O2 as co-substrate, at 23 degrees pl 4.6 extensin peroxidase gave a Km of 0.22 mM P1 and a Vmax 0f 70 mumol P1 cross-linked min-1mg-1 enzyme, at the optimum pH 5.5. Assayed with 12 different extensins from representative monocots, dicots, and gymnosperms, the pl 4.6 isozyme cross-linked highly selectively, indicating two natural groups: cross-linking or CL-extensins and non-cross-linking or NCL-extensins. CL-extensins contained the X-Hyp-Val-Tyr-Lys motif and were also highly glycosylated. However, the simplest motif common to CL-extensins but absent from NCL-extensins was Val-Tyr-Lys. Thus, peroxidative coupling of extensin monomers and resistance of the resultant oligomers to depolymerization by anhydrous HF suggests that the intermolecular cross-link involves tyrosine or lysine.
Gap junctional intercellular communication (GJIC) is the major pathway of intercellular signal transduction, and is thus important for normal cell growth and function. Recent studies have revealed a global distribution of some perfluorinated organic compounds, especially perfluorooctane sulfonic acid (PFOS) in the environment. Because other perfluoroalkanes had been shown to inhibit GJIC, the effects of PFOS and related sulfonated fluorochemicals on GJIC were studied using a rat liver epithelial cell line (WB-F344) and a dolphin kidney epithelial cell line (CDK). In vivo effects on GJIC were studied in Sprague-Dawley rats orally exposed to PFOS for 3 days or 3 weeks. Effects on GJIC were measured using the scrape loading dye technique. PFOS, perfluorooctane sulfonamide (PFOSA), and perfluorohexane sulfonic acid (PFHA) were found to inhibit GJIC in a dose-dependent fashion, and this inhibition occurred rapidly and was reversible. Perfluorobutane sulfonic acid (PFBS) showed no significant effects on GJIC within the concentration range tested. A structure activity relationship was established among all 4 tested compounds, indicating that the inhibitory effect was determined by the length of fluorinated tail and not by the nature of the functional group. The results of the studies of the 2 cell lines and the in vivo exposure were comparable, suggesting that the inhibitory effects of the selected perfluorinated compounds on GJIC were neither species- nor tissue-specific and can occur both in vitro and in vivo.
Perfluorinated fatty acids (PFFAs), such as perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA), are known peroxisome proliferators and hepatocarcinogens. A causal link between an increase in the oxidative stress by peroxisomes and tumor promotion has been proposed to explain the hepatocarcinogenicity of PFOA and PFDA. However, the down-regulation of gap junctional intercellular communication (GJIC) has also been linked to the tumorpromoting properties of many carcinogens. Therefore, the effect of PFFAs on GJIC in WB-rat liver epithelial cells was determined. The chain length of the PFFAs tested for an effect on GJIC ranged from 2 to 10, 16 and 18 carbons. Carbon lengths of 7 to 10 inhibited GJIC in a dose-response fashion, whereas carbon lengths of 2 to 5, 16 and 18 did not appreciably inhibit GJIC. Inhibition occurred within 15 min and was reversible, with total recovery from inhibition occurring within 30 min after the removal of the compound from the growth medium. This short time of inhibition suggests that GJIC was modified at the post-translational level. Also, this short time period was not long enough for peroxisome proliferation. The post-translational modification of the gap junction proteins was not a consequence of altered phosphorylation as determined by Western blot analysis. Perfluorooctanesulfonic acid also inhibited GJIC in a dose-response fashion similar to PFDA, indicating that the determining factor of inhibition was probably the fluorinated tail, which required 7-10 carbons. Our results suggest that PFFAs could potentially act as hepatocarcinogens at the level of gap junctions in addition to or instead of through peroxisome proliferation.
Cell to cell communication via gap junctions is essential in the maintenance of the homeostatic balance of multicellular organisms. Aberrant intercellular gap junctional communication (GJIC) has been implicated in tumor promotion, neuropathy and teratogenesis. Oxidative stress has also been implicated in similar pathologies such as cancer. We report a potential link between oxidative stress and GJIC. Hydrogen peroxide, a known tumor promoter, inhibited GJIC in WB-F344 rat liver epithelial cells with an I50 value of 200 microM. Inhibition of GJIC by H2O2 was reversible as indicated by the complete recovery of GJIC with the removal of H2O2 via a change of fresh media. Free radical scavengers, such as t-butyl alcohol, propylgallate, and Trolox, did not prevent the inhibition of GJIC by H2O2, which indicated that the effects of H2O2 on GJIC was probably not a consequence of aqueous free radical damage. The depletion of intracellular GSH reversed the inhibitory effect of H2O2 on GJIC. The treatment of glutathione-sufficient cells with H2O2 resulted in the hyperphosphorylation of connexin43, which is the basic subunit of the hexameric gap junction protein, as determined by Western blot analysis. TPA, a well-known tumor promoter, also inhibits GJIC via hyperphosphorylation of GJIC, which is a result of protein kinase-C activation. However, H2O2 also induced hyperphosphorylation in GSH-deficient cells that had normal rates of GJIC. Therefore, the mechanism of GJIC inhibition must be different from the TPA-pathway and involves GSH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.