SummaryKinesins from the bipolar (Kinesin-5) family are conserved in eukaryotic organisms and play critical roles during the earliest stages of mitosis to mediate spindle pole body separation and formation of a bipolar mitotic spindle. To date, genes encoding bipolar kinesins have been reported to be essential in all organisms studied. We report the characterization of CaKip1p, the sole member of this family in the human pathogenic yeast Candida albicans. C. albicans Kip1p appears to localize to the mitotic spindle and loss of CaKip1p function interferes with normal progression through mitosis. Inducible excision of CaKIP1 revealed phenotypes unique to C. albicans, including viable homozygous Cakip1 mutants and an aberrant spindle morphology in which multiple spindle poles accumulate in close proximity to each other. Expression of the C. albicans Kip1 motor domain in Escherichia coli produced a protein with microtubule-stimulated ATPase activity that was inhibited by an aminobenzothiazole (ABT) compound in an ATP-competitive fashion. This inhibition results in 'rigor-like', tight association with microtubules in vitro. Upon treatment of C. albicans cells with the ABT compound, cells were killed, and terminal phenotype analysis revealed an aberrant spindle morphology similar to that induced by loss of the CaKIP1 gene. The ABT compound discovered is the first example of a fungal spindle inhibitor targeted to a mitotic kinesin. Our results also show that the non-essential nature and implementation of the bipolar motor in C. albicans differs from that seen in other organisms, and suggest that inhibitors of a nonessential mitotic kinesin may offer promise as cidal agents for antifungal drug discovery.
The US Department of Agriculture, Food Safety Inspection Service (USDA-FSIS) considers mechanically-tenderized beef as “non-intact” and a food safety concern because of the potential for translocation of surface Escherichia coli O157:H7 into the interior of the meat that may be cooked “rare or medium-rare” and consumed. We evaluated 14 potential spray interventions on E. coli O157:H7-inoculated lean beef wafers (~106 CFU/cm2, n = 896) passing through a spray system (18 s dwell time, ~40 pounds per square inch, PSI) integrated into the front end of a Ross TC-700MC tenderizer. Inoculated and processed beef wafers were stomached with D/E neutralizing broth and plated immediately, or were held in refrigerated storage for 1-, 7-, or 14-days prior to microbial enumeration. Seven antimicrobials that showed better performance in preliminary screening on beef wafers were selected for further testing on beef subprimals in conjunction with blade tenderization. Boneless top sirloin beef subprimals were inoculated at ~2 × 104 CFU/cm2 with a four-strain cocktail of E. coli O157:H7 and passed once, lean side up, through an integrated spray system and blade tenderizer. Core samples obtained from each subprimal were examined for the presence/absence of E. coli O157:H7. The absence of E. coli O157:H7 in core samples correlated with the ability of the antimicrobials to reduce bacterial levels on the surface of beef prior to blade tenderization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.