Human apolipoprotein E has three isoforms: APOE2, APOE3 and APOE41. APOE4 is a major genetic risk factor for Alzheimer’s disease2, 3 and is associated with Down’s syndrome dementia and poor neurological outcome after traumatic brain injury and haemorrhage3. Neurovascular dysfunction is present in normal APOE4 carriers4, 5, 6 and individuals withAPOE4-associated disorders3, 7, 8, 9, 10. In mice, lack of Apoe leads to blood–brain barrier (BBB) breakdown11, 12, whereas APOE4 increases BBB susceptibility to injury13. How APOE genotype affects brain microcirculation remains elusive. Using different APOE transgenic mice, including mice with ablation and/or inhibition of cyclophilin A (CypA), here we show that expression of APOE4 and lack of murine Apoe, but not APOE2 and APOE3, leads to BBB breakdown by activating a proinflammatory CypA–nuclear factor-κB–matrix-metalloproteinase-9 pathway in pericytes. This, in turn, leads to neuronal uptake of multiple blood-derived neurotoxic proteins, and microvascular and cerebral blood flow reductions. We show that the vascular defects in Apoe-deficient and APOE4-expressing mice precede neuronal dysfunction and can initiate neurodegenerative changes. Astrocyte-secreted APOE3, but not APOE4, suppressed the CypA–nuclear factor-κB–matrix-metalloproteinase-9 pathway in pericytes through a lipoprotein receptor. Our data suggest that CypA is a key target for treating APOE4-mediated neurovascular injury and the resulting neuronal dysfunction and degeneration.
Hypertensive heart disease (HHD) occurs in patients that clinically have both diastolic and systolic heart failure and will soon become the most common cause of heart failure. Two key aspects of heart failure secondary to HHD are the relatively highly prevalent LV hypertrophy and cardiac fibrosis, caused by changes in the local and systemic neurohormonal environment. The fibrotic state is marked by changes in the balance between MMPs and their inhibitors, which alter the composition of the ECM. Importantly, the fibrotic ECM impairs cardiomyocyte function. Recent research suggests that therapies targeting the expression, synthesis, or activation of the enzymes responsible for ECM homeostasis might represent novel opportunities to modify the natural progression of HHD.
Thioredoxin 1 (Trx) is a known redox regulator that is implicated in the redox control of cell growth and apoptosis inhibition. Here we show that Trx is essential for maintaining the content of S-nitrosylated molecules in endothelial cells. Trx itself is S-nitrosylated at cysteine 69 under basal conditions, and this S-nitrosylation is required for scavenging reactive oxygen species and for preserving the redox regulatory activity of Trx. S-nitrosylation of Trx also contributes to the anti-apoptotic function of Trx. Thus, Trx can exert its complete redox regulatory and anti-apoptotic functions in endothelial cells only when cysteine 69 is S-nitrosylated.
Inflammation and oxidative stress are pathogenic mediators of many diseases, but therapeutic targets remain elusive. In the vasculature, abdominal aortic aneurysm (AAA) formation critically involves inflammaton and matrix degradation. Cyclophilin A (CyPA, encoded by Ppia) is highly expressed in vascular smooth muscle cells (VSMC), is secreted in response to reactive oxygen species (ROS), and promotes inflammation. Using the angiotensin II (AngII)-induced AAA model in Apoe−/− mice, we show that Apoe−/−Ppia−/− mice were completely protected from AngII–induced AAA formation, in contrast to Apoe−/−Ppia+/+ mice. Apoe−/−Ppia−/− mice showed decreased inflammatory cytokine expression, elastic lamina degradation, and aortic expansion. These features were not altered by reconstitution of bone marrow cells from Ppia+/+ mice. Mechanistic studies demonstrated that VSMC-derived intracellular and extracellular CyPA were required for ROS generation and matrix metalloproteinase-2 activation. These data define a novel role for CyPA in AAA formation and suggest CyPA is a new target for cardiovascular therapies.
Mitogen-activated protein (MAP) kinases are a multigene family activated by many extracellular stimuli. There are three groups of MAP kinases based on their dual phosphorylation motifs, TEY, TPY, and TGY, which are termed extracellular signal-regulated protein kinases (ERK1/2), c-Jun N-terminal kinases, and p38, respectively. A new MAP kinase family member termed Big MAP kinase 1 (BMK1) or ERK5 was recently cloned. BMK1 has a TEY sequence similar to ERK1/2 but has unique COOH-terminal and loop-12 domains. To define BMK1 regulation, its activation in cultured rat vascular smooth muscle cells was characterized. Angiotensin II, phorbol ester, platelet-derived growth factor, and tumor necrosis factor-␣ were the strongest stimuli for ERK1/2 but were weak activators of BMK1. In contrast, H 2 O 2 caused concentration-dependent activation of BMK1 but not ERK1/2. Sorbitol activated both BMK1 and ERK1/2. BMK1 activation by H 2 O 2 was calcium-dependent and appeared ubiquitous as shown by stimulation in human skin fibroblasts, human vascular smooth muscle cells, and human umbilical vein endothelial cells. These findings demonstrate that activation of BMK1 is different from ERK1/2 and suggest an important role for BMK1 as a redox-sensitive kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.