The in situ electrochemical growth of Cu benzene-1,3,5-tricarboxylate (CuBTC) metal-organic frameworks, as an affinity layer, directly on custom-fabricated Cu interdigitated electrodes (IDEs) is described, acting as a transducer. Crystalline 5-7 µm thick CuBTC layers are grown on IDEs consisting of 100 electrodes with a width and a gap of both 50 µm and a height of 6-8 µm. These capacitive sensors are exposed to methanol and water vapor at 30 °C. The affinities show to be completely reversible with higher affinity toward water compared to methanol. For exposure to 1000 ppm methanol, a fast response is observed with a capacitance change of 5.57 pF at equilibrium. The capacitance increases in time followed diffusion-controlled kinetics (k = 2.9 mmol s g ). The observed capacitance change with methanol concentration follows a Langmuir adsorption isotherm, with a value for the equilibrium affinity K = 174.8 bar . A volume fraction f = 0.038 is occupied upon exposure to 1000 ppm of methanol. The thin CuBTC affinity layer on the Cu-IDEs shows fast, reversible, and sensitive responses to methanol and water vapor, enabling quantitative detection in the range of 100-8000 ppm.
The wide bandgap of silicon carbide (SiC) has attracted a large interest over the past years in many research fields, such as power electronics, high operation temperature circuits, harsh environmental sensing, and more. To facilitate research on complex integrated SiC circuits, ensure reproducibility, and cut down cost, the availability of a low-voltage SiC technology for integrated circuits is of paramount importance. Here, we report on a scalable and open state-of-the-art SiC CMOS technology that addresses this need. An overview of technology parameters, including MOSFET threshold voltage, subthreshold slope, slope factor, and process transconductance, is reported. Conventional integrated digital and analog circuits, ranging from inverters to a 2-bit analog-to-digital converter, are reported. First yield predictions for both analog and digital circuits show great potential for increasing the amount of integrated devices in future applications.
Capacitors made of interdigitated electrodes (IDEs) as a transducer platform for the sensing of volatile organic compounds (VOCs) have advantages due to their lower power operation and fabrication using standard micro-fabrication techniques. Integrating a micro-electromechanical system (MEMS), such as a microhotplate with IDE capacitor, further allows study of the temperature- dependent sensing response of VOCs. In this paper, the design, fabrication, and characterization of a low-power MEMS microhotplate with IDE capacitor to study the temperature-dependent sensing response to methanol using Zeolitic imidazolate framework (ZIF-8), a class of metal-organic framework (MOF), is presented. A Titanium nitride (TiN) microhotplate with aluminum IDEs suspended on a silicon nitride membrane is fabricated and characterized. The power consumption of the ZIF-8 MOF-coated device at an operating temperature of 50 ∘ C is 4.5 mW and at 200 ∘ C it is 26 mW. A calibration methodology for the effects of temperature of the isolation layer between the microhotplate electrodes and the capacitor IDEs is developed. The device coated with ZIF-8 MOF shows a response to methanol in the concentration range of 500 ppm to 7000 ppm. The detection limit of the sensor for methanol vapor at 20 ∘ C is 100 ppm. In situ study of sensing properties of ZIF-8 MOF to methanol in the temperature range from 20 ∘ C to 50 ∘ C using the integrated microhotplate and IDE capacitor is presented. The kinetics of temperature-dependent adsorption and desorption of methanol by ZIF-8 MOF are fitted with double-exponential models. With the increase in temperature from 20 ∘ C to 50 ∘ C, the response time for sensing of methanol vapor concentration of 5000 ppm decreases by 28%, whereas the recovery time decreases by 70%.
Commercially available gravimeters and seismometers can be used for measuring Earth's acceleration at resolution levels in the order of ng= ffiffiffiffiffiffi Hz p (where g represents earth's gravity) but they are typically high-cost and bulky. In this work the design of a bulk micromachined MEMS device exploiting non-linear buckling behaviour is described, aiming for ng= ffiffiffiffiffiffi Hz p resolution by maximising mechanical and capacitive sensitivity. High mechanical sensitivity is obtained through low structural stiffness. Near-zero stiffness is achieved through geometric design and large deformation into a region where the mechanism is statically balanced or neutrally stable. Moreover, the device has an integrated capacitive comb transducer and makes use of a high-resolution impedance readout ASIC. The sensitivity from displacement to a change in capacitance was maximised within the design and process boundaries given, by making use of a trench isolation technique and exploiting the large-displacement behaviour of the device. The measurement results demonstrate that the resonance frequency can be tuned from 8.7 Hz-18.7 Hz, depending on the process parameters and the tilt of the device. In this system, which combines an integrated capacitive transducer with a sensitivity of 2.55 aF/nm and an impedance readout chip, the theoretically achievable system resolution equals 17.02 ng= ffiffiffiffiffiffi Hz p. The small size of the device and the use of integrated readout electronics allow for a wide range of practical applications for data collection aimed at the internet of things.
This work demonstrates the first on-chip UV optoelectronic integration in 4H-SiC CMOS, which includes an image sensor with 64 active pixels and a total of 1263 transistors on a 100 mm2 chip. The reported image sensor offers serial digital, analog, and 2-bit ADC outputs and operates at 0.39 Hz with a maximum power consumption of 60 μW, which are significant improvements over previous reports. UV optoelectronics have applications in flame detection, satellites, astronomy, UV photography, and healthcare. The complexity of this optoelectronic system paves the way for new applications such harsh environment microcontrollers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.