Introduction
Concentrations of inorganic arsenic (iAs) metabolites in urine present intra-and interindividual variations, which are determined not only by the magnitude of exposure to iAs, but also by differences in genetic, environmental and dietary factors.
Objective
To evaluate whether differences in dietary intake of selected micronutrients are associated with the metabolism of iAs.
Methods
The intake of 21 micronutrients was estimated for 1027 women living in northern Mexico using a food frequency questionnaire. Concentration of urinary metabolites of iAs was determined by high performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and the proportion of iAs metabolites was calculated (%iAs, monomethylarsonic acid [%MMA] and dimethylarsinic acid [%DMA]), as well as ratios corresponding to the first (MMA/iAs), second (DMA/MMA) and total methylation (DMA/iAs).
Results
After adjustment for covariates, it was found that methionine, choline, folate, vitamin B12, Zn, Se and vitamin C favor elimination of iAs mainly by decreasing the %MMA and/or increasing %DMA in urine.
Conclusions
Our results confirm that diet contributes to the efficiency of iAs elimination. Further studies are needed to assess the feasibility of dietary interventions that modulate the metabolism of iAs and the consequent risk of diseases related to its exposure.
Global concern about arsenic in drinking water and its link to numerous diseases make translation of evidence-based research into national policy a priority. Delays in establishing a maximum contaminant level (MCL) to preserve health have increased the burden of disease and caused substantial and avoidable loss of life. The current Mexican MCL for arsenic in drinking water is 25 μg/l (2.5 times higher than the World Health Organization (WHO) recommendation from 1993). Mexico’s struggles to set its arsenic MCL offer a compelling example of shortcomings in environmental health policy. We explore factors that might facilitate policy change in Mexico: scientific evidence, risk communication and public access to information, economic and technological resources, and politics. To raise awareness of the health, societal, and economic implications of arsenic contamination of drinking water in Mexico, we suggest action steps for attaining environmental policy change and better protect population health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.