Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.
Aptostichus simus is a trapdoor spider endemic to the coastal dunes of central and southern California and, on morphological grounds, is recognized as a single species. Mitochondrial DNA 16S rRNA sequences demonstrate that most populations are fixed for the same haplotype and that the population haplotypes from San Diego County, Los Angeles County, Santa Rosa Island, and Monterey County are extremely divergent (6-12%), with estimated separation times ranging from 2 to 6 million years. A statistical cluster analysis of morphological features demonstrates that this genetic divergence is not reflected in anatomical features that might signify ecological differentiation among these lineages. The species status of these divergent populations of A. simus depends upon the species concept utilized. If a time-limited genealogical perspective is employed, A. simus would be separated at the base into two genetically distinct species. This study suggests that species concepts based on morphological distinctiveness, in spider groups with limited dispersal capabilities, probably underestimate true evolutionary diversity.
SUMMARY The sticky prey capture threads of orb-webs are critical to web performance. By retaining insects that strike the web, these spirally arrayed threads allow a spider time to locate and subdue prey. The viscous capture threads spun by modern orb-weaving spiders of the Araneoidea clade replaced the dry, fuzzy cribellar capture threads of the Deinopoidea and feature regularly spaced moist, adhesive droplets. The stickiness of a cribellar thread is limited by its tendency to peel from a surface after the adhesion generated at the edges of contact is exceeded. In this study we test the hypothesis that viscous thread overcomes this limitation by implementing a suspension bridge mechanism (SBM) that recruits the adhesion of multiple thread droplets. We do so by using contact plates of four widths to measure the stickiness of six species' viscous threads whose profiles range from small, closely spaced droplets to large, widely spaced droplets. The increased stickiness registered by an increased number of thread droplets supports the operation of a SBM. However, the accompanying decrease in mean per droplet adhesion shows that droplets interior to the edges of thread contact contribute successively less adhesion. Models developed from these data suggest that the suspension bridge mechanism is limited to a span of approximately 12 droplets.
Summary1. The replacement of dry, fuzzy cribellar prey capture thread by viscous, adhesive capture thread was a major event in the evolution of orb-weaving spiders. Over 95% of all orb-weaving species now produce adhesive threads. 2. Adhesive thread achieves its stickiness with a much greater material economy than does cribellar thread. 3. Transformational analyses show that, relative to spider mass, adhesive orb-weavers invest less material per mm of capture thread and produce stickier capture threads than do cribellate orb-weavers. 4. The total cost of producing an orb-web that contains cribellar thread is reduced by 32% when a spider recycles its silk and another 34% when these capture threads are replaced by adhesive threads of equal stickiness. 5. The increased economy with which adhesive capture thread achieves its stickiness may have been an important factor that favoured the origin and success of modern orbweaving spiders that produce adhesive capture threads.
SUMMARYViscous threads that form the prey capture spiral of araneoid orb-webs retain insects that strike the web, giving a spider more time to locate and subdue them. The viscoelastic glycoprotein glue responsible for this adhesion forms the core of regularly spaced aqueous droplets, which are supported by protein axial fibers. Glycoprotein extensibility both facilitates the recruitment of adhesion from multiple droplets and dissipates the energy generated by insects struggling to free themselves from the web. Compounds in the aqueous material make the droplets hygroscopic, causing an increase in both droplet volume and extensibility as humidity (RH) rises. We characterized these humidity-mediated responses at 20%, 37%, 55%, 72% and 90% RH in two large orbweavers, Argiope aurantia, which is found in exposed habitats, and Neoscona crucifera, which occupies forests and forest edges. The volume-specific extension of A. aurantia glycoprotein reached a maximum value at 55% RH and then declined, whereas that of N. crucifera increased exponentially through the RH range. As RH increased, the relative stress on droplet filaments at maximum extension, as gauged by axial line deflection, decreased in a linear fashion in A. aurantia, but in N. crucifer increased logarithmically, indicating that N. crucifera threads are better equipped to dissipate energy through droplet elongation. The greater hygroscopicity of A. aurantia threads equips them to function in lower RH environments and during the afternoon when RH drops, but their performance is diminished during the high RH of the morning hours. In contrast, the lower hygroscopicity of N. crucifera threads optimizes their performance for intermediate and high RH environments and during the night and morning. These interspecific differences support the hypothesis that viscous capture threads are adapted to the humidity regime of an orbweaver's habitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.