The scattering of longitudinal and shear waves from spherical, nucleated cells and three-dimensional tissues with simple and hierarchical microstructures was numerically modeled at the microscopic level using an iterative multipole approach. The cells were modeled with a concentric core-shell (nucleus-cytoplasm) structure embedded in an extracellular matrix. Using vector multipole expansions and boundary conditions, scattering solutions were derived for single cells with either solid or fluid properties for each of the cell components. Tissues were modeled as structured packings of cells. Multiple scattering between cells was simulated using addition theorems to translate the multipole fields from cell to cell in an iterative process. Backscattering simulations of single cells indicated that changes in the shear properties and nuclear diameter had the greatest effect on the frequency spectra. Simulated wave field images and high-frequency spectra (15-75 MHz) from tissues containing 1211-2137 cells exhibited up to 20% enhancement of the field amplitudes at the plasma membrane, significant changes in spectral features due to neoplastic and other microstructural alterations, and a detection threshold of approximately 8.5% infiltration of tumor cells into normal tissue. These findings suggest that histology-based simulations may provide insight into fundamental ultrasound-tissue interactions and help in the development of new medical technologies.
A numerical modeling approach was developed to predict the dielectric properties of heterogeneous particulate materials with arbitrary microstructures. To test the method, simulation and experimental data were acquired for the effective permittivities of various glass sphere suspensions. Both ordered lattices and random microstructures of up to 3600 spheres were modeled for volume fractions of 0.025-0.60. The electric fields in the suspensions were computed using an iterative multipole method that included multiple-scattering effects. The effective permittivities were obtained by averaging the electric field and electric displacement over a representative volume. Frequency spectra, electric field images, and single-scattering results ͑i.e., no particleparticle interactions͒ were additionally generated. The results were compared to experimental data for random close-packed microstructures, to effective-medium approximations, to exact lattice models, and to a perturbation expansion model. The comparisons showed that the iterative models agreed with the exact lattice models to within 3.31% for crystalline suspensions. Results for random suspensions agreed with the perturbation expansion model to within 1.76% for volume fractions up to 0.50. Single-scattering models additionally predicted permittivities for the microstructures as well as or better than the Maxwell Garnett approximation ͓Philos. Trans. R. Soc. London, Ser. A 203, 385 ͑1904͔͒, suggesting that microstructural effects and multipole moments higher than the dipole are required for more accurate statistical prediction of effective permittivities. The effective permittivities, convergence behavior, and dispersion behavior of the simulations were sensitive to both microstructure and the extent of multiple scattering included in the models, illustrating how the macroscopic properties depend significantly on the microscopic details of the interactions. In contrast to other approaches, the iterative multipole method can model both the frequency and spatial dependencies of the electromagnetic properties of particulate materials, as well as a wide variety of microstructures, including polydisperse and hierarchical systems.
This research presents the first application of tomographic techniques for investigating gravity wave structures in polar mesospheric clouds (PMCs) imaged by the Cloud Imaging and Particle Size instrument on the NASA AIM satellite. Albedo data comprising consecutive PMC scenes were used to tomographically reconstruct a 3‐D layer using the Partially Constrained Algebraic Reconstruction Technique algorithm and a previously developed “fanning” technique. For this pilot study, a large region (760 × 148 km) of the PMC layer (altitude ~83 km) was sampled with a ~2 km horizontal resolution, and an intensity weighted centroid technique was developed to create novel 2‐D surface maps, characterizing the individual gravity waves as well as their altitude variability. Spectral analysis of seven selected wave events observed during the Northern Hemisphere 2007 PMC season exhibited dominant horizontal wavelengths of ~60–90 km, consistent with previous studies. These tomographic analyses have enabled a broad range of new investigations. For example, a clear spatial anticorrelation was observed between the PMC albedo and wave‐induced altitude changes, with higher‐albedo structures aligning well with wave troughs, while low‐intensity regions aligned with wave crests. This result appears to be consistent with current theories of PMC development in the mesopause region. This new tomographic imaging technique also provides valuable wave amplitude information enabling further mesospheric gravity wave investigations, including quantitative analysis of their hemispheric and interannual characteristics and variations.
Ultrasonic spectroscopy may offer an alternative to imaging methods for the in vivo detection of microscopic cancer. To investigate this potential, a numerical model that incorporates multiple scattering, wave-mode conversion, and hierarchical microstructures was developed to simulate ultrasonic interactions in biological tissue at the microscopic level. Simulated high-frequency (20–75MHz) spectra of up to 2137 cells displayed significant correlations to nucleus diameter and malignant cell infiltration, and indicated as few as 300 malignant cells may be detectable in normal tissue. The results suggest that ultrasonic spectroscopy combined with simulation-based interpretive models may provide real-time histopathology during surgeries, biopsies, and endoscopies.
A new methodology is presented to create two-dimensional (2D) and three-dimensional (3D) tomographic reconstructions of mesospheric airglow layer structure using two-station all-sky image measurements. A fanning technique is presented that produces a series of cross-sectional 2D reconstructions, which are combined to create a 3D mapping of the airglow volume. The imaging configuration is discussed and the inherent challenges of using limited-angle data in tomographic reconstructions have been analyzed using artificially generated imaging objects. An iterative reconstruction method, the partially constrained algebraic reconstruction technique (PCART), was used in conjunction with a priori information of the airglow emission profile to constrain the height of the imaged region, thereby reducing the indeterminacy of the inverse problem. Synthetic projection data were acquired from the imaging objects and the forward problem to validate the tomographic method and to demonstrate the ability of this technique to accurately reconstruct information using only two ground-based sites. Reconstructions of the OH airglow layer were created using data recorded by all-sky CCD cameras located at Bear Lake Observatory, Utah, and at Star Valley, Wyoming, with an optimal site separation of ∼100 km. The ability to extend powerful 2D and 3D tomographic methods to two-station ground-based measurements offers obvious practical advantages for new measurement programs. The importance and applications of mesospheric tomographic reconstructions in airglow studies, as well as the need for future measurements and continued development of techniques of this type, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.