Barnacle adhesion strength was used to screen seventy-seven polydimethylsiloxane elastomeric coatings for fouling-release properties. The test coatings were designed to investigate the effect on barnacle adhesion strength of silicone fluid additive type, additive location, additive molecular weight, additive loading level, mixtures of additives, coating matrix type and coating fillers. The type of silicone fluid additive was the primary controlling factor in barnacle fouling-release. The type of silicone matrix in which the fluid resided was found to alter the effect on fouling-release. Two PDMS fluids, DMSC15 and DBE224, significantly reduced the adhesion strength of barnacles compared to unmodified elastomers. Optimum fouling-release performance was dependent on the interaction of fluid type and elastomeric matrix.
Model silicone foul-release coatings with controlled molecular architecture were evaluated to determine the effect of compositional variables such as filler loading and crosslink density on pseudobarnacle attachment strength. Pseudobarnacle adhesion values correlated with filler loadings in both condensation and hydrosilylation-cured silicones. Variation of crosslink density of hydrosilylationcured silicones had an insignificant effect on attachment strength. X-ray photoelectron spectroscopy (XPS) indicated that the mode of failure upon detachment of the pseudobarnacle was dependent upon the crosslink density; samples with high crosslink density failed cohesively within the silicone.
Silicone biofouling release coatings have been shown to be an effective method of combating fouling. Nearly all silicone foul release coatings are augmented with an oil additive to decrease macrofouling attachment strength. This paper addresses the effect of the type of oil that is incorporated into the silicone coating and the type of silicone coating itself (silica vs calcium carbonate filled) on macrofouling adhesion strengths to the coating. It was found that not only are the main effects of oil type and silicone coating type important in determining the magnitude of the attachment strength of the organism, but the interaction term (oil type crossed with coating type) is highly significant for all organisms studied, except oysters at the University of Hawaii test site (Oahu, Hawaii) which has a significance level of alpha = 0.1. Each of the organisms exhibited a unique response to the various silicone fouling release coatings. Thus, in order to predict the effectives of foul release coatings, the composition variables of the coatings and the type of target organisms must be considered.
The transfer from the self-polishing organotin to tin-free antifouling coatings has created a new learning curve for the shipping industry. This study investigated the hydrodynamic performance of four commercially available antifouling coatings that were subjected to both static and dynamic seawater immersion. The results showed that each coating type developed its own characteristic fouling community and that there were significant differences in drag properties that were further modified by the static or dynamic immersion conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.