The principles and theoretical background are presented for a new process-based model (PESERA) that is designed to estimate long-term average erosion rates at 1 km resolution and has, to date, been applied to most of Europe. The model is built around a partition of precipitation into components for overland flow (infiltration excess, saturation excess and snowmelt), evapo-transpiration and changes in soil moisture storage. Transpiration is used to drive a generic plant growth model for biomass, constrained as necessary by land use decisions, primarily on a monthly time step. Leaf fall, with corrections for cropping, grazing, etc., also drives a simple model for soil organic matter. The runoff threshold for infiltration excess overland flow depends dynamically on vegetation cover, organic matter and soil properties, varying over the year. The distribution of daily rainfall totals has been fitted to a Gamma distribution for each month, and drives overland flow and sediment transport (proportional to the sum of overland flow squared) by summing over this distribution. Total erosion is driven by erodibility, derived from soil properties, squared overland flow discharge and gradient; it is assessed at the slope base to estimate total loss from the land, and delivered to stream channels.
Fire is known to impact soil properties and hydrological flow paths. However, the impact of prescribed vegetation burning on blanket peatland hydrology is poorly understood. We studied 10 blanket peat headwater catchments. Five were subject to prescribed burning, while five were unburnt controls. Within the burnt catchments, we studied plots where the last burn occurred 2 (B2), 4 (B4), 7 (B7), or greater than 10 years (B101) prior to the start of measurements. These were compared with plots at similar topographic wetness index locations in the control catchments. Plots subject to prescribed vegetation burning had significantly deeper water tables (difference in means 5 5.3 cm) and greater water table variability than unburnt plots. Water table depths were significantly different between burn age classes (B2 > B4 > B7 > B101) while B101 water tables were not significantly different to the unburnt controls. Overland flow was less common on burnt peat than on unburnt peat, recorded in 9% and 17% of all runoff trap visits, respectively. Storm lag times and hydrograph recession limb periods were significantly greater (by 1 and 13 h on average, respectively) in the burnt catchments overall, but for the largest 20% of storms sampled, there was no significant difference in storm lag times between burnt and unburnt catchments. For the largest 20% of storms, the hydrograph intensity of burnt catchments was significantly greater than those of unburnt catchments (means of 4.2 3 10 25 and 3.4 3 10 25 s 21 , respectively), thereby indicating a nonlinear streamflow response to prescribed burning. Together, these results from plots to whole river catchments indicate that prescribed vegetation burning has important effects on blanket peatland hydrology at a range of spatial scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.