Bile salt hydrolases (BSHs) catalyze the ''gateway'' reaction in a wider pathway of bile acid modification by the gut microbiota. Because bile acids function as signaling molecules regulating their own biosynthesis, lipid absorption, cholesterol homeostasis, and local mucosal defenses in the intestine, microbial BSH activity has the potential to greatly influence host physiology. However, the function, distribution, and abundance of BSH enzymes in the gut community are unknown. Here, we show that BSH activity is a conserved microbial adaptation to the human gut environment with a high level of redundancy in this ecosystem. Through metagenomic analyses we identified functional BSH in all major bacterial divisions and archaeal species in the gut and demonstrate that BSH is enriched in the human gut microbiome. Phylogenetic analysis illustrates that selective pressure in the form of conjugated bile acid has driven the evolution of members of the NtnCGH-like family of proteins toward BSH activity in gut-associated species. Furthermore, we demonstrate that BSH mediates bile tolerance in vitro and enhances survival in the murine gut in vivo. Overall, we demonstrate the use of function-driven metagenomics to identify functional anchors in complex microbial communities, and dissect the gut microbiome according to activities relevant to survival in the mammalian gastrointestinal tract.bile modification ͉ microbiota ͉ functional anchor ͉ GI survival
For 70 years antibiotics have saved countless lives and enabled the development of modern medicine, but it is becoming clear that the success of antibiotics may have only been temporary and we now anticipate a long-term, generational and perhaps never-ending challenge to find new therapies to combat antibiotic-resistant bacteria. As the search for new conventional antibiotics has become less productive and there are no clear strategies to improve success, a broader approach to address bacterial infection is needed. This review of potential alternatives to antibiotics (A2As) was commissioned by the Wellcome Trust, jointly funded by the Department of Health, and involved scientists and physicians from academia and industry. For the purpose of this review, A2As were defined as non-compound approaches (that is, products other than classical antibacterial agents) that target bacteria or approaches that target the host. In addition, the review was limited to agents that had potential to be administered orally, by inhalation or by injection for treatment of systemic/invasive infection. Within these criteria, the review has identified 19 A2A approaches now being actively progressed. The feasibility and potential clinical impact of each approach was considered. The most advanced approaches (and the only ones likely to deliver new treatments by 2025) are antibodies, probiotics, and vaccines now in Phase II and Phase III trials. These new agents will target infections caused by P. aeruginosa, C. difficile and S. aureus. However, other than probiotics for C. difficile, this first wave will likely best serve as adjunctive or preventive therapies. This suggests that conventional antibiotics will still be needed. The economics of pathogen-specific therapies must improve to encourage innovation, and greater investment into A2As with broad-spectrum activity (e.g. antimicrobial-, host defense-and, anti-biofilm peptides) is needed. Increased funding, estimated at >£1.5 bn over 10 years is required to validate and then develop these A2As. Investment needs to be partnered with translational expertise and targeted to support the validation of these approaches at Clinical Phase II proof of concept. Such an approach could transform our understanding of A2As as effective new therapies and should provide the catalyst required for both active engagement and investment by the pharma/biotech industry. Only a sustained, concerted and coordinated international effort will provide the solutions needed for the next decade.
Proteus mirabilis is a common cause of catheter-associated urinary tract infection (C-UTI). It blocks indwelling urethral catheters through the formation of extensive crystalline biofilms. The obstruction of urine flow can induce episodes of pyelonephritis, septicemia, and shock. P. mirabilis exhibits a type of motility referred to as swarming, in which multicellular rafts of elongated, hyperflagellated swarmer cells form and move rapidly in concert over solid surfaces. It has been suggested that swarming is important in the pathogenesis of C-UTI. In this study we generated a set of stable transposon mutants deficient in swarming and used them to assess the role of swarming in the migration of P. mirabilis over urinary catheters. Swarming was found to be essential for migration over all-silicone catheters. Swarming-deficient mutants were attenuated in migration over hydrogel-coated latex catheters, but those capable of swimming motility were able to move over and infect these surfaces. A novel vapor fixation technique for the preparation of specimens and scanning electron microscopy were used to resolve the ultrastructure of P. mirabilis multicellular rafts. The flagellar filaments of P. mirabilis were found to be highly organized during raft migration and were interwoven in phase to form helical connections between adjacent swarmer cells. Mutants lacking these novel organized structures failed to swarm successfully. We suggest that these structures are important for migration and formation of multicellular rafts. In addition, the highly organized structure of multicellular rafts enables P. mirabilis to initiate C-UTI by migration over catheter surfaces from the urethral meatus into the bladder.Indwelling bladder catheterization is a convenient way to manage the problems of urinary retention and incontinence that afflict so many elderly and disabled people. The catheter, however, forms a bridge along which bacteria can pass from a contaminated external environment into a vulnerable body cavity. Even with meticulous nursing care, all patients undergoing catheterization for longer than a month will develop urinary tract infections (16). The number of catheterized patients is so large that catheter-associated urinary tract infections (C-UTI) are the most common infections acquired in hospitals and other health care facilities (29).Proteus mirabilis poses particular problems in the care of patients undergoing long-term indwelling bladder catheterization. Infections with this organism result in the formation of extensive crystalline biofilms on the catheters that can block the flow of urine from the bladder (28). The crystalline material, composed of magnesium and calcium phosphates, precipitates out of solution under the alkaline conditions generated by the P. mirabilis urease enzyme (5,13,20). The obstruction of the flow of urine through the catheter can induce serious complications. Urine either leaks around the outside of the catheter causing patients to become incontinent or is retained in the bladder resulting ...
Here, we outline our current understanding of the human gut virome, in particular the phage component of this ecosystem, highlighting progress, and challenges in viral discovery in this arena. We reveal how developments in high-throughput sequencing technologies and associated data analysis methodologies are helping to illuminate this abundant ‘biological dark matter.’ Current evidence suggests that the human gut virome is a highly individual but temporally stable collective, dominated by phages exhibiting a temperate lifestyle. This viral community also appears to encode a surprisingly rich functional repertoire that confers a range of attributes to their bacterial hosts, ranging from bacterial virulence and pathogenesis to maintaining host–microbiome stability and community resilience. Despite the significant advances in our understanding of the gut virome in recent years, it is clear that we remain in a period of discovery and revelation, as new methods and technologies begin to provide deeper understanding of the inherent ecological characteristics of this viral ecosystem. As our understanding increases, the nature of the multi-partite interactions occurring between host and microbiome will become clearer, helping us to more rationally define the concepts and principles that will underpin approaches to using human gut virome components for medical or biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.