BackgroundCoronary artery disease (CAD) is the leading cause of human morbidity and mortality worldwide, underscoring the need to improve diagnostic strategies. Platelets play a major role, not only in the process of acute thrombosis during plaque rupture, but also in the formation of atherosclerosis itself. MicroRNAs are endogenous small non-coding RNAs that control gene expression and are expressed in a tissue and disease-specific manner. Therefore they have been proposed to be useful biomarkers. It remains unknown whether differences in miRNA expression levels in platelets can be found between patients with premature CAD and healthy controls.Methodology/Principal FindingsIn this case-control study we measured relative expression levels of platelet miRNAs using microarrays from 12 patients with premature CAD and 12 age- and sex-matched healthy controls. Six platelet microRNAs were significantly upregulated (miR340*, miR451, miR454*, miR545:9.1. miR615-5p and miR624*) and one miRNA (miR1280) was significantly downregulated in patients with CAD as compared to healthy controls. To validate these results, we measured the expression levels of these candidate miRNAs by qRT-PCR in platelets of individuals from two independent cohorts; validation cohort I consisted of 40 patients with premature CAD and 40 healthy controls and validation cohort II consisted of 27 patients with artery disease and 40 healthy relatives. MiR340* and miR624* were confirmed to be upregulated in patients with CAD as compared to healthy controls in both validation cohorts.Conclusion/SignificanceTwo miRNAs in platelets are significantly upregulated in patients with CAD as compared to healthy controls. Whether the two identified miRNAs can be used as biomarkers and whether they are cause or consequence of the disease remains to be elucidated in a larger prospective study.
BackgroundIn this study, we discovered and validated candidate microRNA (miRNA) biomarkers for coronary artery disease (CAD).MethodCandidate tissue-derived miRNAs from atherosclerotic plaque material in patients with stable coronary artery disease (SCAD) (n=14) and unstable coronary artery disease (UCAD) (n=25) were discovered by qPCR-based arrays. We validated differentially expressed miRNAs, along with seven promising CAD-associated miRNAs from the literature, in the serum of two large cohorts (n=395 and n=1000) of patients with SCAD and UCAD and subclinical atherosclerosis (SubA) and controls, respectively.ResultFrom plaque materials (discovery phase), miR-125b-5p and miR-193b-3p were most upregulated in SCAD, whereas miR-223-3p and miR-142-3p were most upregulated in patients with UCAD. Subsequent validation in serum from patients with UCAD, SCAD, SubA and controls demonstrated significant upregulation of miR-223-3p, miR-133a-3p, miR-146-3p and miR-155-5p. The ischaemia-related miR-499-5p was also highly upregulated in patients with UCAD compared with the other groups (SCAD OR 20.63 (95% CI 11.16 to 38.15), SubA OR 96.10 (95% CI 40.13 to 230.14) and controls OR 15.73 (95% CI 7.80 to 31.72)). However, no significant difference in miR-499-5p expression was observed across SCAD, SubA and controls. MiR-122-5p was the only miRNA to be significantly upregulated in the serum of both patients with UCAD and SCAD.ConclusionIn conclusion, miR-122-5p and miR-223-3p might be markers of plaque instability.
The demonstration of opposing effects of exogenous U-II in patients with hypertension and normal subjects suggests that U-II may be contributory to the increased vascular tone of these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.