Renal fibrosis is the usual outcome of an excessive accumulation of extracellular matrix (ECM) that frequently occurs in membranous and diabetic nephropathy. The result of renal fibrosis would be end-stage renal failure, which requires costly dialysis or kidney transplantation. Renal fibrosis typically results from chronic inflammation via production of several molecules, such as growth factors, angiogenic factors, fibrogenic cytokines, and proteinase. All of these factors can stimulate excessive accumulation of ECM components through epithelial to mesenchymal transition (EMT), which results in renal fibrosis. Among these, transforming growth factor-beta (TGF-β) is proposed to be the major regulator in inducing EMT. Besides ECM protein synthesis, TGF-β is involved in hypertrophy, proliferation, and apoptosis in renal cells. In particular, TGF-β is likely to be most potent and ubiquitous profibrotic factor acting through several intracellular signaling pathways including protein kinases and transcription factors. Factors that regulate TGF-β expression in renal cell include hyperglycemia, angiotensin II, advance glycation end products, complement activation (C5b-9), and oxidative stress. Over the past several years, the common understanding of the pathogenic factors that lead to renal fibrosis in nephropathy has improved considerably. This review will discuss the recent findings on the mechanisms and role of TGF-β in membranous and diabetic nephropathy.
Hyperlipidemia is often associated with obesity and diabetes, and can lead to serious complications like atherosclerosis and fatty liver disease. Coagonist of GLP-1 and glucagon receptors is a therapy under clinical investigation for treatment of obesity and diabetes. In this study, we have characterized the mechanism of hypolipidemic effect of a balanced coagonist using high cholesterol-fed hamsters. Tyloxapol-induced hypertriglyceridemia, lipolysis in adipose tissue, and bile homeostasis were assessed after repeated dose treatment of the coagonist of GLP-1 and glucagon receptors (Aib2 C24 chimera 2, SC). Antagonists of GLP-1, glucagon, and FGF21 receptors were coadministered, and FGF21 sensitivity was determined in liver and adipose tissue. Repeated dose treatment of coagonist reduced cholesterol and increased FGF21 in blood and liver. Coagonist treatment reduced hepatic triglyceride secretion, increased lipolysis and reduced body weight. Antagonism of GLP-1 and glucagon receptors partially blocked the effect of the coagonist on lipid metabolism in circulation and liver, while FGF21 receptor antagonist completely abolished it. Glucagon and GLP-1 receptors antagonists blocked the action of coagonist on cholesterol excretion and bile flow in liver, but FGF21 antagonist was not effective. Treatment with the coagonist increased expression of , and cofactor in liver and adipose. In conclusion, coagonist of GLP-1 and glucagon receptors improved lipid metabolism in liver of dyslipidemic hamsters. This effect is partially mediated by GLP-1 and glucagon receptors, and the improved FGF21 sensitivity could be the mechanism of hypolipidemic action of the coagonist of GLP-1/glucagon receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.