This paper attempts to integrate the physiological and ecological perspectives of the reproductive biology of the house mouse (Mus musculus). The endeavor is made within a larger context to provide a prototype for mammalian reproductive ecology in general. Specifically, the environmental regulation of the reproduction of Mus musculus is examined in relation to its ecological opportunism and, in particular, in relation to its history of global colonization. House mice can live as commensals of man or under totally feral conditions. Stable, high density, commensal populations are characterized by an insular division of the living space into demeterritories, each dominated by a single male. Feral populations typically are characterized by temporal, spatial, and social instability. Territoriality is improbable under such conditions, particularly given the necessity for large home ranges in most feral habitats. In both feral and commensal populations, however, male aggressiveness promotes the large-scale dispersal of young, all of which are potential colonizers. Of the ten or so environmental factors known to influence reproduction in house mice, seven probably are of routine importance in natural populations: diurnal modulation by daily light:dark cycles; caloric intake; nutrition; extreme temperature; agaonistic stimuli; socio-tactile cues; and priming pheronomes. The last two factors named operate directly on the secretion of luteinizing hormone or prolactin; the others act at many points in the reproductive system. Reproduction in the house mouse seems divorced from photoperiodically induced seasonality; indeed, this species breeds well even in constant darkness. Seasonal breeding may or may not then occur, depending upon dietary considerations, with or without a secondary interaction with variation in ambient temperature. There is no evidence for a dependence upon secondary plant compounds. Some of the effects of priming pheromones that have been observed previously in laboratory mice probably play no meaningful role in wild populations. The remaining pheromonal phenomena can be conceptualized as a single cueing system that has three components: (a) urinary cues of socially dominant males can accelerate ovulation in females, adult or prepubertal; (b) female urinary cues may elevate pheromonal potency in adult males, thereby forming a feedback loop by which the females elicit their own ovulation; and (c) the male's action on prepubertal females can be blocked by urinary cues emanating from other females. When all of the above is viewed in toto, the reproductive biology of the house mouse seems uniquely suited to support ecological opportunism. The relatively few environmental inhibitors of reproduction in this species should enhance the ability of dispersing young to colonize an exceptionally wide variety of habitats and climates...
Almost all human populations exhibit seasonal variation in births, owing mostly to seasonal variation in the frequency of conception. This review focuses on the degree to which environmental factors like nutrition, temperature and photoperiod contribute to these seasonal patterns by acting directly on the reproductive axis. The reproductive strategy of humans is basically that of the apes: Humans have the capacity to reproduce continuously, albeit slowly, unless inhibited by environmental influences. Two, and perhaps three, environmental factors probably act routinely as seasonal inhibitors in some human populations. First, it seems likely that ovulation is regulated seasonally in populations experiencing seasonal variation in food availability. More specifically, it seems likely that inadequate food intake or the increased energy expenditure required to obtain food, or both, can delay menarche, suppress the frequency of ovulation in the nonlactating adult, and prolong lactational amenorrhea in these populations on a seasonal basis. This action is most easily seen in tropical subsistence societies where food availability often varies greatly owing to seasonal variation in rainfall; hence births in these populations often correlate with rainfall. Second, it seems likely that seasonally high temperatures suppress spermatogenesis enough to influence the incidence of fertilization in hotter latitudes, but possibly only in males wearing clothing that diminishes scrotal cooling. Since most of our knowledge about this phenomenon comes from temperate latitudes, the sensitivity of spermatogenesis in both human and nonhuman primates to heat in the tropics needs further study. It is quite possible that high temperatures suppress ovulation and early embryo survival seasonally in some of these same populations. Since we know less than desired about the effect of heat stress on ovulation and early pregnancy in nonhuman mammals, and nothing at all about it in humans or any of the other primates, this is an important area for future research. Third, correlational data suggest that there may be some degree of regulation of reproduction by photoperiod in humans at middle to higher latitudes. Populations at these latitudes often show a peak in presumed conceptions associated with the vernal equinox. On the other hand, evidence gathered by neuroendocrinologists tends to argue against reproductive photoresponsiveness in humans.
In the laboratory, ovulation is suppressed when a mammal is in negative energy balance whether that state is caused by inadequate food intake, excessive locomotor activity or heavy thermoregulatory costs. In this paper, knowledge generated in the laboratory about the link between ovulation and energy balance is examined in relation to the kinds of energetic challenges mammals actually face in natural habitats. When viewed in that context, several conclusions can be drawn. First, females ovulate whenever extant energetic conditions permit unless the process is blocked by non-metabolic stress, social cues or a predictive seasonal cue such as photoperiod. In the latter case, most mammals show at least a seasonal tendency in their reproduction and the majority do not use a predictive cue; they reproduce opportunistically in relation to seasonal variation in the energetic characteristics of their environment. Second, the widely held assumption that a female's fat reserves must exceed a critical level in order that she may ovulate finds no support in the literature dealing with natural populations. Third, the surprisingly rapid responsiveness of the gonadotrophin releasing hormone (GnRH) pulse generator to energetic manipulation probably reflects the study of animals that are in a pure survival mode. Fourth, the complexity of the energetic challenges mammals face in the wild suggests that there are probably multiple metabolic and neural pathways coupling ovulation to energy balance and that these pathways are probably characterized by considerable overlap and redundancy. Thus, fifth, to develop a more realistic overview of these pathways there is a need for experimental designs that present mammals with the kinds of complex challenges they actually face in the wild habitats in which they evolved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.