No abstract
Abstract:Elephant are believed to be one of the main ecological drivers in the conversion of savanna woodlands to grassland. We assessed the impacts of elephant on large trees (≥5 m in height) in the southern section of the Kruger National Park. Tree dimensions and utilization by elephant were recorded for 3082 individual trees across 22 transects (average length of 3 km and 10 m wide). Sixty per cent of the trees exhibited elephant utilization and 4% were dead as a direct result of elephant foraging behaviour. Each height class of tree was utilized in proportion to abundance. However, the size of the tree and the species influenced the intensity of utilization and foraging approach. Sclerocarya birrea was actively selected for and experienced the highest proportional utilization (75% of all trees). Interestingly, the proportion of large trees that were utilized and pushed over increased with distance from permanent water, a result which has implications for the provision of water in the KNP. We conclude that mortality is likely to be driven by a combination of factors including fire, drought and disease, rather than the actions of elephant alone. Further investigation is also required regarding the role of senescence and episodic mortality.
Summary1. Understanding and accurately predicting the spatial patterns of habitat use by organisms is important for ecological research, biodiversity conservation and ecosystem management. However, this understanding is complicated by the effects of spatial scale, because the scale of analysis affects the quantification of species-environment relationships. 2. We therefore assessed the influence of environmental context (i.e. the characteristics of the landscape surrounding a site), varied over a large range of scales (i.e. ambit radii around focal sites), on the analysis and prediction of habitat selection by African elephants in Kruger National Park, South Africa. 3. We focused on the spatial scaling of the elephants' response to their main resources, forage and water, and found that the quantification of habitat selection strongly depended on the scales at which environmental context was considered. Moreover, the inclusion of environmental context at characteristic scales (i.e. those at which habitat selectivity was maximized) increased the predictive capacity of habitat suitability models. 4. The elephants responded to their environment in a scale-dependent and perhaps hierarchical manner, with forage characteristics driving habitat selection at coarse spatial scales, and surface water at fine spatial scales. 5. Furthermore, the elephants exhibited sexual habitat segregation, mainly in relation to vegetation characteristics. Male elephants preferred areas with high tree cover and low herbaceous biomass, whereas this pattern was reversed for female elephants. 6. We show that the spatial distribution of elephants can be better understood and predicted when scale-dependent species-environment relationships are explicitly considered. This demonstrates the importance of considering the influence of spatial scale on the analysis of spatial patterning in ecological phenomena.
The vegetation dynamics of the savanna ecosystem are driven by complex interactions between biotic and abiotic factors, and thus are expected to exhibit emergent properties of biocomplexity. We explore the relative importance of static and dynamic drivers in explaining the patterns of mortality of large trees in the Kruger National Park, South Africa. Data on large trees were collected from 22 transects in April 2006, and these transects were re‐sampled in November 2008. Of the 2546 individually‐identified trees that were re‐sampled, 290 (11.4%) died in the interim. We tested several competing hypotheses with varying levels of complexity, and found that mortality of large trees was affected mainly by both static (geophysical and landscape characteristics) and dynamic (elephant damage and fire) factors that were either additive or interactive in their effects. Elephant damage was the main predictor of tree mortality, but fire also played an important role depending on the landscape type. Other static variables such as position‐on‐slope, height below canopy, and altitude had weak effects in explaining tree mortality. These results indicate that keystone features such as large trees, show differential vulnerability to mortality that is landscape‐specific. For conservation managers, this implies that the dynamic drivers (elephant and fire) of tree mortality have to be managed at the specific landscape‐level. We suggest that this emergent biocomplexity in the spatial and temporal patterns of large tree mortality is not unique to the African savannas, but is likely widespread across heterogeneous landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.