We have evaluated the solvent and thermal effects on spectroscopic parameters of 99 Tc complexes coordinated to explicit water molecules. Molecular dynamics simulations were performed followed by hyperfine coupling constant calculations ( iso ). Our results show a significant increase of iso , which demonstrates that the studied compounds can be promising contrast agents in MRI.
Platinum complexes have been studied for cancer treatment for several decades. Furthermore, another important platinum characteristic is related to its chemical shifts, in which some studies have shown that the 195Pt chemical shifts are very sensitive to the environment, coordination sphere, and oxidation state. Based on this relevant feature, Pt complexes can be proposed as potential probes for NMR spectroscopy, as the chemical shifts values will be different in different tissues (healthy and damaged) Therefore, in this paper, the main goal was to investigate the behavior of Pt chemical shifts in the different environments. Calculations were carried out in vacuum, implicit solvent, and inside the active site of P13K enzyme, which is related with breast cancer, using the density functional theory (DFT) method. Moreover, the investigation of platinum complexes with a selective moiety can contribute to early cancer diagnosis. Accordingly, the Pt complexes selected for this study presented a selective moiety, the 2-(4′aminophenyl)benzothiazole derivative. More specifically, two Pt complexes were used herein: One containing chlorine ligands and one containing water in place of chlorine. Some studies have shown that platinum complexes coordinated to chlorine atoms may suffer hydrolyses inside the cell due to the low chloride ion concentration. Thus, the same calculations were performed for both complexes. The results showed that both complexes presented different chemical shift values in the different proposed environments. Therefore, this paper shows that platinum complexes can be a potential probe in biological systems, and they should be studied not only for cancer treatment, but also for diagnosis.
Organophosphorus (OP) compounds are used as both chemical weapons and pesticides. However, these agents are very dangerous and toxic to humans, animals, and the environment. Thus, investigations with reactivators have been deeply developed in order to design new antidotes with better efficiency, as well as a greater spectrum of action in the acetylcholinesterase (AChE) reactivation process. With that in mind, in this work, we investigated the behavior of trimedoxime toward the Mus musculus acetylcholinesterase (MmAChE) inhibited by a range of nerve agents, such as chemical weapons. From experimental assays, reactivation percentages were obtained for the reactivation of different AChE–OP complexes. On the other hand, theoretical calculations were performed to assess the differences in interaction modes and the reactivity of trimedoxime within the AChE active site. Comparing theoretical and experimental data, it is possible to notice that the oxime, in most cases, showed better reactivation percentages at higher concentrations, with the best result for the reactivation of the AChE–VX adduct. From this work, it was revealed that the mechanistic process contributes most to the oxime efficiency than the interaction in the site. In this way, this study is important to better understand the reactivation process through trimedoxime, contributing to the proposal of novel antidotes.
: This review article aims to address the main features of breast cancer. Thus, the general aspects of this disease have been shown since the first evidence of breast cancer in the world until the numbers today. In this way, there are some ways to prevent breast cancer, such as the woman's lifestyle (healthy eating habits and physical activities) that helps to reduce the incidence of this anomaly. The first noticeable symptom of this anomaly is typically a lump that feels different from the rest of the breast tissue. More than 80% of breast cancer are discovered when the woman feels a lump being present and about 90% of the cases, the cancer is noticed by the woman herself. Currently, the most used method for the detection of cancer and other injuries is the Magnetic Resonance Imaging (MRI) technique. This technique has been shown to be very effective, however, for a better visualization of the images, contrast agents (CAs) are used, which are paramagnetic compounds capable of increasing the relaxation of the hydrogen atoms of the water molecules present in the body tissues. The most used CAs are Gd3+ complexes, although they are very efficient, they are toxic to the organism. Thus, new contrast agents have been studied to replace Gd3+ complexes, we can mention iron oxides as a promising substitute.
The organophosphorus compounds (OP) are used as both chemical weapons and pesticides. However, these agents are very dangerous and toxic to humans, animals, and the environment. Thus, investigations with reactivators have been deeply developed in order to design new antidotes with better efficiency, as well as greater spectrum of action in the AChE reactivation process. With that in mind, in this work, we investigated the behavior of trimedoxime toward the Mus musculus Acetylcholinesterase (MmAChE) inhibited by a range of nerve agents, such as chemical weapons. From experimental essays, reactivation percentages were obtained for the reactivation of different AChE-OP complexes. On the other hand, theoretical calculations were performed to assess the differences of interaction modes and reactivity of trimedoxime within AChE active site. Comparing theoretical and experimental data, it is possible to notice that the oxime, in most case, showed better reactivation percentages at higher concentrations, with the best result for the reactivation of the AChE-VX adduct. From this work, it was revealed that the mechanistic process contributes most to the oxime efficiency than the interaction in the site. In this way, this study was important to better understand the reactivation process through trimedoxime, contributing to the proposal of novel antidotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.