Advances in spectroscopic techniques have led to an increase in the use of optical properties (absorbance and fluorescence) to assess dissolved organic matter (DOM) composition and infer sources and processing. However, little information is available to assess the impact of biological and photolytic processing on the optical properties of original DOM source materials. Over a 3.5 month laboratory study, we measured changes in commonly used optical properties and indices in DOM leached from peat soil, plants, and algae following biological and photochemical degradation to determine whether they provide unique signatures that can be linked to original DOM source. Changes in individual optical parameters varied by source material and process, with biodegradation and photodegradation often causing values to shift in opposite directions. Although values for different source materials frequently overlapped, multivariate statistical analyses showed that unique optical signatures could be linked to original DOM source material, with 17 optical properties determined by discriminant analysis to be significant (p < 0.05) in distinguishing between DOM source and environmental processing. These results demonstrate that inferring source material from optical properties is possible when parameters are evaluated in combination even after extensive biological and photochemical alteration.Dissolved organic matter (DOM) plays a central role in aquatic environments. Although quantifying DOM amount (commonly by measuring DOC concentration) is important, it is also important to characterize DOM composition because its chemical make-up determines how it reacts in the environment (Liang and Singer 2003;Minor et al. 2014). For example, a portion of the DOM pool is a source of bioavailable organic matter that supports aquatic food webs, attenuates light in the water column, and mobilizes and transports pollutants. In addition, a variety of studies have demonstrated that DOM composition can be used to infer the sources of DOM, which can help inform drinking water and watershed management (e.g., McKnight et al. 2001;Stedmon et al. 2003;Kraus et al. 2011).Both DOM amount and composition vary spatially and temporally due not only to its proximity to source material but also to its exposure to environmental processing (Hood et al. 2005;Coble 2007;Helms et al. 2008). Under some conditions sorption and the formation of colloids and even precipitation can transfer DOM into the particulate pool (POM), however the two main processes affecting DOM amount and composition in aquatic environments are biodegradation and photodegradation (Kieber et al. 1990;Miller and Moran 1997;Del Vecchio and Blough 2002). Both of these processes can lead to the conversion of DOM to inorganic compounds (i.e., CO 2 ) and its subsequent loss from the water column, and to the alteration of DOM chemical composition.Biodegradation-which can occur in both the photic and aphotic zone-typically leads to the rapid loss of labile, low molecular weight (LMW) aliphatic m...
Field-deployable sensors designed to continuously measure the fluorescence of colored dissolved organic matter (FDOM) in situ are of growing interest. However, the ability to make FDOM measurements that are comparable across sites and over time requires a clear understanding of how instrument characteristics and environmental conditions affect the measurements. In particular, the effects of water temperature and light attenuation by both colored dissolved material and suspended particles may be significant in settings such as rivers and streams. Using natural standard reference materials, we characterized the performance of four commerciallyavailable FDOM sensors under controlled laboratory conditions over ranges of temperature, dissolved organic matter (DOM) concentrations, and turbidity that spanned typical environmental ranges. We also examined field data from several major rivers to assess how often attenuation artifacts or temperature effects might be important. We found that raw (uncorrected) FDOM values were strongly affected by the light attenuation that results from dissolved substances and suspended particles as well as by water temperature. Observed effects of light attenuation and temperature agreed well with theory. Our results show that correction of measured FDOM values to account for these effects is necessary and feasible over much of the range of temperature, DOM concentration, and turbidity commonly encountered in surface waters. In most cases, collecting high-quality FDOM measurements that are comparable through time and between sites will require concurrent measurements of temperature and turbidity, and periodic discrete sample collection for laboratory measurement of DOM.
Dissolved organic matter (DOM) dynamics during storm events has received considerable attention in forested watersheds, but the extent to which storms impart rapid changes in DOM concentration and composition in highly disturbed agricultural watersheds remains poorly understood. In this study, we used identical in situ optical sensors for DOM fluorescence (FDOM) with and without filtration to continuously evaluate surface water DOM dynamics in a 415 km2 agricultural watershed over a 4 week period containing a short‐duration rainfall event. Peak turbidity preceded peak discharge by 4 h and increased by over 2 orders of magnitude, while the peak filtered FDOM lagged behind peak turbidity by 15 h. FDOM values reported using the filtered in situ fluorometer increased nearly fourfold and were highly correlated with dissolved organic carbon (DOC) concentrations (r2 = 0.97), providing a highly resolved proxy for DOC throughout the study period. Discrete optical properties including specific UV absorbance (SUVA254), spectral slope (S290–350), and fluorescence index (FI) were also strongly correlated with in situ FDOM and indicate a shift toward aromatic, high molecular weight DOM from terrestrially derived sources during the storm. The lag of the peak in FDOM behind peak discharge presumably reflects the draining of watershed soils from natural and agricultural landscapes. Field and experimental evidence showed that unfiltered FDOM measurements underestimated filtered FDOM concentrations by up to ∼60% at particle concentrations typical of many riverine systems during hydrologic events. Together, laboratory and in situ data provide insights into the timing and magnitude of changes in DOM quantity and quality during storm events in an agricultural watershed, and indicate the need for sample filtration in systems with moderate to high suspended sediment loads.
Abstract:Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability (<1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S 290 -350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short-term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment.
Summary 1. We investigated diurnal nitrate (NO3−) concentration variability in the San Joaquin River using an in situ optical NO3− sensor and discrete sampling during a 5‐day summer period characterized by high algal productivity. Dual NO3− isotopes (δ15NNO3 and δ18ONO3) and dissolved oxygen isotopes (δ18ODO) were measured over 2 days to assess NO3− sources and biogeochemical controls over diurnal time‐scales. 2. Concerted temporal patterns of dissolved oxygen (DO) concentrations and δ18ODO were consistent with photosynthesis, respiration and atmospheric O2 exchange, providing evidence of diurnal biological processes independent of river discharge. 3. Surface water NO3− concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5‐day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of δ15NNO3 and δ18ONO3 isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3− variability in the San Joaquin River during the study. The lack of a clear explanation for NO3− variability likely reflects a combination of riverine biological processes and time‐varying physical transport of NO3− from upstream agricultural drains to the mainstem San Joaquin River. 4. The application of an in situ optical NO3− sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.